Relationship between iron-limited growth and energy limitation during phased cultivation of Candida utilis. 1978

K C Thomas, and P S Dawson

The yeast Candida utilis was continuously synchronized by the phasing technique (6 h doubling time) with either iron or nitrogen as the limiting nutrient. Iron limitations resulted in decreased molar growth yields with respect to the carbon substrates and ammonia and in increased specific rates of oxygen uptake. Relatively low energy-charge values were maintained by the iron-limited culture. All these taken together seemed to indicate that the growth of the yeast under iron limitation was also limited by metabolically available energy. Consideralbe amounts of ethyl acetate were produced by the yeast under phased cultivation when the growth was limited by iron but not by nitrogen. In vitro studies using cell-free extracts showed that the substrates for ethyl acetate synthesis were acetyl coenzyme A (acetyl CoA) and ethanol. Under iron-limited growth acetyl CoA seemed to be diverted to ethyl acetate formation rather than being oxidized through the tricarboxylic acid (TCA) cycle. The possibility of energy limitation under iron-limited growth being brought about by the reduced capacity of the yeast to oxidize acetyl CoA through the TCA cycle is considered.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002175 Candida A genus of yeast-like mitosporic Saccharomycetales fungi characterized by producing yeast cells, mycelia, pseudomycelia, and blastophores. It is commonly part of the normal flora of the skin, mouth, intestinal tract, and vagina, but can cause a variety of infections, including CANDIDIASIS; ONYCHOMYCOSIS; VULVOVAGINAL CANDIDIASIS; and CANDIDIASIS, ORAL (THRUSH). Candida guilliermondii var. nitratophila,Candida utilis,Cyberlindnera jadinii,Hansenula jadinii,Lindnera jadinii,Monilia,Pichia jadinii,Saccharomyces jadinii,Torula utilis,Torulopsis utilis,Monilias
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005290 Ferric Compounds Inorganic or organic compounds containing trivalent iron. Compounds, Ferric
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D000105 Acetyl Coenzyme A Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent. Acetyl CoA,Acetyl-CoA,CoA, Acetyl,Coenzyme A, Acetyl
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

K C Thomas, and P S Dawson
December 1977, Canadian journal of microbiology,
K C Thomas, and P S Dawson
August 1970, Canadian journal of microbiology,
K C Thomas, and P S Dawson
January 1977, Prikladnaia biokhimiia i mikrobiologiia,
K C Thomas, and P S Dawson
January 1982, Mikrobiologicheskii zhurnal,
K C Thomas, and P S Dawson
May 1976, Archives of microbiology,
K C Thomas, and P S Dawson
July 1982, Journal of general microbiology,
Copied contents to your clipboard!