Ultrastructure of Rhizobium japonicum in relation to its attachment to root hairs. 1978

A K Bal, and S Shantharam, and S Ratnam

In Rhizobium japonicum strain Nitragin 61A76, morphologically distinct types of bacteria were found to occur in yeast extract-mannitol broth cultures, at both mid-log and stationary phases. Of these only the capsular form, characterized by a smooth cell envelope, storage granules (glycogen and poly-beta-hydroxybutyric acid), and an amorphous extracellular capsule, bound soybean lectin. The binding site was localized in the capsular material. Less than 1% of the bacterial population differentiated into these capsular forms, which were also able to attach to the soybean root hair surface.

UI MeSH Term Description Entries
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D012231 Rhizobium A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.
D013025 Glycine max An annual legume. The SEEDS of this plant are edible and used to produce a variety of SOY FOODS. Soy Beans,Soybeans,Bean, Soy,Beans, Soy,Soy Bean,Soybean
D037102 Lectins Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition. Animal Lectin,Animal Lectins,Isolectins,Lectin,Isolectin,Lectin, Animal,Lectins, Animal
D037121 Plant Lectins Protein or glycoprotein substances of plant origin that bind to sugar moieties in cell walls or membranes. Some carbohydrate-metabolizing proteins (ENZYMES) from PLANTS also bind to carbohydrates, however they are not considered lectins. Many plant lectins change the physiology of the membrane of BLOOD CELLS to cause agglutination, mitosis, or other biochemical changes. They may play a role in plant defense mechanisms. Lectins, Plant,Phytagglutinin,Plant Agglutinin,Plant Lectin,Agglutinins, Plant,Phytagglutinins,Plant Agglutinins,Agglutinin, Plant,Lectin, Plant

Related Publications

A K Bal, and S Shantharam, and S Ratnam
December 1975, Applied microbiology,
A K Bal, and S Shantharam, and S Ratnam
January 1981, Zeitschrift fur allgemeine Mikrobiologie,
A K Bal, and S Shantharam, and S Ratnam
May 1985, Zhonghua Minguo wei sheng wu ji mian yi xue za zhi = Chinese journal of microbiology and immunology,
A K Bal, and S Shantharam, and S Ratnam
July 1996, Microbial ecology,
A K Bal, and S Shantharam, and S Ratnam
June 2005, Molecular plant-microbe interactions : MPMI,
A K Bal, and S Shantharam, and S Ratnam
March 1979, Journal of bacteriology,
A K Bal, and S Shantharam, and S Ratnam
May 1996, Cell,
A K Bal, and S Shantharam, and S Ratnam
September 1991, Journal of bacteriology,
Copied contents to your clipboard!