The cellular pathology of Menkes steely hair syndrome. 1978

R S Williams, and P C Marshall, and I T Lott, and V S Caviness

The principal neuropathologic abnormality observed in three autopsy cases of Menkes steely hair syndrome was widespread nerve cell loss and gliosis, especially severe in the cerebral and cerebellar cortex and in the relay nuclei of the thalamus. Granular stellate cells of neocortical layer IV and the granule cells of the cerebellum are cell classes which were particularly severely depopulated. The degree of reduction of myelinated axons is consistent with axonal degeneration secondary to nerve cell loss. There are also prominent abnormalities in the patterns of dendritic arborization of surviving cortical pyramids and cerebellar Purkinje cells as seen in Golgi impregnations. The deviant neuronal forms are probably due, in part, to failure of innervation by afferent fiber systems during the fetal as well as postnatal epochs.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007706 Menkes Kinky Hair Syndrome An inherited disorder of copper metabolism transmitted as an X-linked trait and characterized by the infantile onset of HYPOTHERMIA, feeding difficulties, hypotonia, SEIZURES, bony deformities, pili torti (twisted hair), and severely impaired intellectual development. Defective copper transport across plasma and endoplasmic reticulum membranes results in copper being unavailable for the synthesis of several copper containing enzymes, including PROTEIN-LYSINE 6-OXIDASE; CERULOPLASMIN; and SUPEROXIDE DISMUTASE. Pathologic changes include defects in arterial elastin, neuronal loss, and gliosis. (From Menkes, Textbook of Child Neurology, 5th ed, p125) Hypocupremia, Congenital,Kinky Hair Syndrome,Menkes Syndrome,Steely Hair Syndrome,Congenital Hypocupremia,Copper Transport Disease,Kinky Hair Disease,Menkea Syndrome,Menkes Disease,Menkes' Disease,Steely Hair Disease,X-Linked Copper Deficiency,Congenital Hypocupremias,Copper Deficiencies, X-Linked,Copper Deficiency, X-Linked,Copper Transport Diseases,Deficiencies, X-Linked Copper,Deficiency, X-Linked Copper,Disease, Copper Transport,Disease, Steely Hair,Diseases, Copper Transport,Diseases, Kinky Hair,Diseases, Menkes',Diseases, Steely Hair,Hair Diseases, Kinky,Hair Diseases, Steely,Hypocupremias, Congenital,Kinky Hair Diseases,Menkea Syndromes,Menkes' Diseases,Steely Hair Diseases,Steely Hair Syndromes,Syndrome, Menkea,Syndrome, Steely Hair,Syndromes, Menkea,Syndromes, Steely Hair,Transport Disease, Copper,Transport Diseases, Copper,X Linked Copper Deficiency,X-Linked Copper Deficiencies
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001928 Brain Diseases, Metabolic Acquired or inborn metabolic diseases that produce brain dysfunction or damage. These include primary (i.e., disorders intrinsic to the brain) and secondary (i.e., extracranial) metabolic conditions that adversely affect cerebral function. Central Nervous System Metabolic Disorders,Encephalopathies, Metabolic,Metabolic Disorders, Brain,Acquired Metabolic Diseases, Brain,Acquired Metabolic Diseases, Nervous System,Acquired Metabolic Encephalopathies,Brain Diseases, Metabolic, Acquired,Brain Disorders, Metabolic,Brain Disorders, Metabolic, Acquired,Brain Syndrome, Metabolic,Brain Syndrome, Metabolic, Acquired,CNS Metabolic Disorders,CNS Metabolic Disorders, Acquired,Encephalopathy, Metabolic, Acquired,Metabolic Brain Diseases,Metabolic Brain Diseases, Acquired,Metabolic Brain Syndrome,Metabolic Brain Syndrome, Acquired,Metabolic Brain Syndromes,Metabolic Brain Syndromes, Acquired,Metabolic Diseases, Acquired, Nervous System,Metabolic Disorder, Central Nervous System, Acquired,Metabolic Disorders, CNS,Metabolic Disorders, CNS, Acquired,Metabolic Disorders, Central Nervous System,Metabolic Encephalopathies,Nervous System Acquired Metabolic Diseases,Acquired Metabolic Encephalopathy,Brain Disease, Metabolic,Brain Disorder, Metabolic,Brain Metabolic Disorder,Brain Metabolic Disorders,CNS Metabolic Disorder,Encephalopathies, Acquired Metabolic,Encephalopathy, Acquired Metabolic,Encephalopathy, Metabolic,Metabolic Brain Disease,Metabolic Brain Disorder,Metabolic Brain Disorders,Metabolic Disorder, Brain,Metabolic Disorder, CNS,Metabolic Encephalopathies, Acquired,Metabolic Encephalopathy,Metabolic Encephalopathy, Acquired
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical

Related Publications

R S Williams, and P C Marshall, and I T Lott, and V S Caviness
December 1974, Developmental medicine and child neurology,
R S Williams, and P C Marshall, and I T Lott, and V S Caviness
January 1986, Indian pediatrics,
R S Williams, and P C Marshall, and I T Lott, and V S Caviness
January 1981, The Journal of pediatrics,
R S Williams, and P C Marshall, and I T Lott, and V S Caviness
April 1973, Lancet (London, England),
R S Williams, and P C Marshall, and I T Lott, and V S Caviness
August 1977, The Australasian journal of dermatology,
R S Williams, and P C Marshall, and I T Lott, and V S Caviness
July 1988, American journal of medical genetics,
R S Williams, and P C Marshall, and I T Lott, and V S Caviness
April 1976, Archives of disease in childhood,
R S Williams, and P C Marshall, and I T Lott, and V S Caviness
December 1986, The Japanese journal of experimental medicine,
R S Williams, and P C Marshall, and I T Lott, and V S Caviness
January 1975, The New England journal of medicine,
R S Williams, and P C Marshall, and I T Lott, and V S Caviness
June 1975, Nutrition reviews,
Copied contents to your clipboard!