Reconstitution of neutral amino acid transport from partially purified membrane components from Ehrlich ascites tumor cells. 1977

G Cecchini, and G S Payne, and D L Oxender

Solubilized protein fractions have been obtained from plasma membranes of Ehrlich ascites cells either by extraction with 0.5% Triton X-100 or by extraction with 2% cholate. Partial purification of the solubilized protein fraction has been obtained by utilizing a combination of ammonium sulfate precipitation and column chromatography. Leucine-binding activity has been detected in the Triton X-100 solubilized membrane fraction. The leucine-binding activity was measured by equilibrium dialysis and was saturable with high levels of leucine or phenylalanine and is not strongly effected by alanine. These properties are similar to those previously identified as System L. In addition, the cholate extracted protein fraction was partially purified and reconstituted into liposomes. Sodium dependent uptake of alanine and leucine could be demonstrated in the reconstituted vesicles. Concentrative uptake was dependent upon a sodium gradient. A membrane potential produced by valinomycin mediated potassium diffusion in the presence of sodium also stimulated amino acid transport in reconstituted liposomes.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D002286 Carcinoma, Ehrlich Tumor A transplantable, poorly differentiated malignant tumor which appeared originally as a spontaneous breast carcinoma in a mouse. It grows in both solid and ascitic forms. Ehrlich Ascites Tumor,Ascites Tumor, Ehrlich,Ehrlich Tumor Carcinoma,Tumor, Ehrlich Ascites
D002457 Cell Extracts Preparations of cell constituents or subcellular materials, isolates, or substances. Cell Extract,Extract, Cell,Extracts, Cell
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

G Cecchini, and G S Payne, and D L Oxender
January 1974, The Journal of membrane biology,
G Cecchini, and G S Payne, and D L Oxender
December 1965, Biochemische Zeitschrift,
G Cecchini, and G S Payne, and D L Oxender
July 1975, The American journal of physiology,
G Cecchini, and G S Payne, and D L Oxender
May 1985, The Journal of biological chemistry,
G Cecchini, and G S Payne, and D L Oxender
January 1980, The Journal of biological chemistry,
G Cecchini, and G S Payne, and D L Oxender
February 1987, Biochimica et biophysica acta,
G Cecchini, and G S Payne, and D L Oxender
June 1984, Archives of biochemistry and biophysics,
G Cecchini, and G S Payne, and D L Oxender
April 1963, Biochimica et biophysica acta,
G Cecchini, and G S Payne, and D L Oxender
May 1978, Biochimica et biophysica acta,
G Cecchini, and G S Payne, and D L Oxender
December 1973, Biochimica et biophysica acta,
Copied contents to your clipboard!