[Effect of chronic alcohol administration and of folic acid deficiency on iron absorption]. 1978

A Celada, and H Rudolf, and A Donath

The influence of chronic alcohol ingestion and artificially induced folic acid deficiency on iron absorption has been measured in rabbits by whole body counter. Results show that chronic alcohol ingestion does not modify iron absorption. Folic acid deficiency increases iron absorption by two probable mechanisms: first by increased plasma iron turnover (PIT), which parallels ineffective erythropoiesis, and second by a probable direct effect on the intestinal mucous membranes. This second mechanism appears to be independent of PIT: concomitant deficiency of folic acid and alcohol ingestion produces an increase in iron absorption without modification of PIT. Experience with drugs inhibiting protein synthesis suggests that this increase may be mediated by decreased protein synthesis.

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005494 Folic Acid Deficiency A nutritional condition produced by a deficiency of FOLIC ACID in the diet. Many plant and animal tissues contain folic acid, abundant in green leafy vegetables, yeast, liver, and mushrooms but destroyed by long-term cooking. Alcohol interferes with its intermediate metabolism and absorption. Folic acid deficiency may develop in long-term anticonvulsant therapy or with use of oral contraceptives. This deficiency causes anemia, macrocytic anemia, and megaloblastic anemia. It is indistinguishable from vitamin B 12 deficiency in peripheral blood and bone marrow findings, but the neurologic lesions seen in B 12 deficiency do not occur. (Merck Manual, 16th ed) Deficiency, Folic Acid,Acid Deficiencies, Folic,Acid Deficiency, Folic,Deficiencies, Folic Acid,Folic Acid Deficiencies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000437 Alcoholism A primary, chronic disease with genetic, psychosocial, and environmental factors influencing its development and manifestations. The disease is often progressive and fatal. It is characterized by impaired control over drinking, preoccupation with the drug alcohol, use of alcohol despite adverse consequences, and distortions in thinking, most notably denial. Each of these symptoms may be continuous or periodic. (Morse & Flavin for the Joint Commission of the National Council on Alcoholism and Drug Dependence and the American Society of Addiction Medicine to Study the Definition and Criteria for the Diagnosis of Alcoholism: in JAMA 1992;268:1012-4) Alcohol Abuse,Alcoholic Intoxication, Chronic,Ethanol Abuse,Alcohol Addiction,Alcohol Dependence,Alcohol Use Disorder,Abuse, Alcohol,Abuse, Ethanol,Addiction, Alcohol,Alcohol Use Disorders,Chronic Alcoholic Intoxication,Dependence, Alcohol,Intoxication, Chronic Alcoholic,Use Disorders, Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

A Celada, and H Rudolf, and A Donath
November 1971, The Indian journal of medical research,
A Celada, and H Rudolf, and A Donath
September 1969, Journal of clinical pathology,
A Celada, and H Rudolf, and A Donath
January 1970, Archives of internal medicine,
A Celada, and H Rudolf, and A Donath
April 1984, The American journal of clinical nutrition,
A Celada, and H Rudolf, and A Donath
December 1964, British medical journal,
A Celada, and H Rudolf, and A Donath
September 1975, Clinics in perinatology,
A Celada, and H Rudolf, and A Donath
March 1965, British medical journal,
A Celada, and H Rudolf, and A Donath
October 1953, Klinische Wochenschrift,
A Celada, and H Rudolf, and A Donath
January 1973, Acta haematologica,
A Celada, and H Rudolf, and A Donath
January 1992, Annals of nutrition & metabolism,
Copied contents to your clipboard!