Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. 1968

J F Miller, and G F Mitchell

An injection of viable thymus or thoracic duct lymphocytes was absolutely essential to enable a normal or near-normal 19S liemolysin-forming cell response in the spleens of neonatally thymectomized mice challenged with sheep erythrocytes. Syngeneic thymus lymphocytes were as effective as thoracic duct lymphocytes in this system and allogeneic or semiallogeneic cells could also reconstitute their hosts. No significant elevation of the response was achieved by giving either bone marrow cells, irradiated thymus or thoracic duct cells, thymus extracts or yeast. Spleen cells from reconstituted mice were exposed to anti-H2 sera directed against either the donor of the thymus or thoracic duct cells, or against the neonatally thymectomized host. Only isoantisera directed against the host could significantly reduce the number of hemolysin-forming cells present in the spleen cell suspensions. It is concluded that these antibody-forming cells are derived, not from the inoculated thymus or thoracic duct lymphocytes, but from the host. Thoracic duct cells from donors specifically immunologically tolerant of sheep erythrocytes had a markedly reduced restorative capacity in neonatally thymectomized recipients challenged with sheep erythrocytes. These results have suggested that there are cell types, in thymus or thoracic duct lymph, with capacities to react specifically with antigen and to induce the differentiation, to antibody-forming cells, of hemolysin-forming cell precursors derived from a separate cell line present in the neonatally thymectomized hosts.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008297 Male Males
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005260 Female Females
D006460 Hemolysin Proteins Proteins from BACTERIA and FUNGI that are soluble enough to be secreted to target ERYTHROCYTES and insert into the membrane to form beta-barrel pores. Biosynthesis may be regulated by HEMOLYSIN FACTORS. Hemolysin,Hemolysins,Hemalysins,Proteins, Hemolysin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody

Related Publications

J F Miller, and G F Mitchell
May 1967, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J F Miller, and G F Mitchell
July 1969, Journal of immunology (Baltimore, Md. : 1950),
J F Miller, and G F Mitchell
January 1966, The Journal of experimental medicine,
J F Miller, and G F Mitchell
December 1968, Journal of the National Cancer Institute,
J F Miller, and G F Mitchell
March 1972, The Journal of experimental medicine,
J F Miller, and G F Mitchell
April 1971, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!