Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Oxidative phosphorylation and mitochondrial oxidation of pyruvate, 3-hydroxybutyrate and tricarboxylic acid-cycle intermediates. 1968

A E Senior, and H S Sherratt

1. The effects of the hypoglycaemic compound pent-4-enoic acid, and of four structurally related non-hypoglycaemic compounds (pent-2-enoic acid, pentanoic acid, cyclopropanecarboxylic acid and cyclobutanecarboxylic acid), on several reactions in rat liver mitochondria were determined. 2. The use of manometric techniques for measurements of oxidations and of phosphorylation is critically discussed. 3. Pent-4-enoic acid and pentanoic acid uncoupled oxidative phosphorylation at low concentrations, but usually by not more than about 50%. 4. All the compounds, except cyclobutanecarboxylic acid, strongly inhibited the oxidation of pyruvate and 2-oxoglutarate, but the oxidations of succinate, citrate and 3-hydroxybutyrate were not strongly inhibited. 5. All the compounds, except cyclobutanecarboxylic acid, inhibited decarboxylation of [1-(14)C]pyruvate with ferricyanide as electron acceptor. 6. All the compounds, except pent-2-enoic acid, caused mitochondrial swelling after a time-lag.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles
D003521 Cyclopropanes Three-carbon cycloparaffin cyclopropane (the structural formula (CH2)3) and its derivatives.
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006885 Hydroxybutyrates Salts and esters of hydroxybutyric acid. Hydroxybutyric Acid Derivatives,Hydroxybutyric Acids,Acid Derivatives, Hydroxybutyric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A E Senior, and H S Sherratt
July 1970, The American journal of physiology,
A E Senior, and H S Sherratt
June 1949, The Journal of biological chemistry,
A E Senior, and H S Sherratt
January 1955, Antonie van Leeuwenhoek,
Copied contents to your clipboard!