Subcellular fractions from spleen and liver as transplantation antigens in various genetic differences. 1968

A Sankowski, and E Skopińska, and K Nouza

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003582 Cytogenetics A subdiscipline of genetics which deals with the cytological and molecular analysis of the CHROMOSOMES, and location of the GENES on chromosomes, and the movements of chromosomes during the CELL CYCLE. Cytogenetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.

Related Publications

A Sankowski, and E Skopińska, and K Nouza
November 1964, Annals of the New York Academy of Sciences,
A Sankowski, and E Skopińska, and K Nouza
January 1969, Scandinavian journal of haematology,
A Sankowski, and E Skopińska, and K Nouza
September 1969, Biulleten' eksperimental'noi biologii i meditsiny,
A Sankowski, and E Skopińska, and K Nouza
July 1961, The Journal of biophysical and biochemical cytology,
A Sankowski, and E Skopińska, and K Nouza
June 1978, Biokhimiia (Moscow, Russia),
A Sankowski, and E Skopińska, and K Nouza
June 1998, Mechanisms of ageing and development,
A Sankowski, and E Skopińska, and K Nouza
April 1983, Acta pharmacologica et toxicologica,
A Sankowski, and E Skopińska, and K Nouza
July 1984, Biochimica et biophysica acta,
A Sankowski, and E Skopińska, and K Nouza
March 1971, Antibiotiki,
Copied contents to your clipboard!