Oxidation of D(minus) lactate by the electron transport fraction of Azotobacter vinelandii. 1968

P Jurtshuk, and L Harper

d(-) Lactate oxidation in Azobacter vinelandii strain O is readily carried out by the membrane bound enzyme that concentrates in the electron transport fraction (R(3)). This oxidation in the R(3) fraction is not dependent on externally added nicotinamide adenine dinucleotide, flavine adenine dinucleotide, or flavine mononucleotide. Phenazine methosulfate, O(2), and menadione all served as good electron carriers, and the oxidation of lactate was limited to the d(-) stereoisomer. Of all the alpha-hydroxyacids examined, only d(-) lactate and d(-) alpha-hydroxybutyrate were oxidized by the R(3) fraction. Paper chromatographic studies revealed that the 2,4-dinitrophenylhydrazine derivative formed from d(-) lactate oxidation was pyruvate. Pyruvate, in turn, could be further decarboxylated nonoxidatively by the R(3) fraction. Spectral studies revealed that both the R(3) flavoprotein and cytochrome (a(2), a(1), b(1), c(4), and c(5)) components were reduced by d(-) lactate. The d(-) lactic oxidase activity was sensitive to electron transport inhibitors, i.e., chlorpromazine, antimycin A, 2-n-heptyl-4-hydroxyquinoline-N-oxide, rotenone, dicumarol, and cyanide, and to a small extent to 4,4,4-trifluoro-1-(2-thienyl)-1,3-butane-dione (TFTB) and Amytal. The d(-) lactic phenazine methosulfate and menadione reductases were sensitive only to dicumarol and TFTB. Chlorpromazine was found to be a highly specific inhibitor of d(-) lactic oxidase activity, 50% inhibition occurring at 6.6 x 10(-6)m.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D011804 Quinolines
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D002746 Chlorpromazine The prototypical phenothiazine antipsychotic drug. Like the other drugs in this class chlorpromazine's antipsychotic actions are thought to be due to long-term adaptation by the brain to blocking DOPAMINE RECEPTORS. Chlorpromazine has several other actions and therapeutic uses, including as an antiemetic and in the treatment of intractable hiccup. Aminazine,Chlorazine,Chlordelazine,Chlorpromazine Hydrochloride,Contomin,Fenactil,Largactil,Propaphenin,Thorazine,Hydrochloride, Chlorpromazine
D003486 Cyanides Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical. Cyanide,Isocyanide,Isocyanides

Related Publications

P Jurtshuk, and L Harper
June 1969, Journal of bacteriology,
P Jurtshuk, and L Harper
May 1968, Journal of bacteriology,
P Jurtshuk, and L Harper
March 1966, Biochimica et biophysica acta,
P Jurtshuk, and L Harper
May 1985, Biochimica et biophysica acta,
P Jurtshuk, and L Harper
July 1955, Journal of bacteriology,
P Jurtshuk, and L Harper
August 1994, Biochemical Society transactions,
Copied contents to your clipboard!