An electron microscope study of myofibril formation in embryonic rabbit skeletal muscle. 1979

W Kilarski, and M Jakubowska

Trunk and limb muscles from fetal and newborn rabbits were investigated by means of light and electron microscopes. At 14 days gestation, the presumptive myoblasts migrate away from the myotome to form the anlage of the muscle of the trunk and limb. Among the population of undifferentiated cells, the myoblasts were recognized due to the presence of actin and myosin filaments. The aggregates of thin and thick filaments appear at the periphery of the cells. There is a great variety of filament assembly. The presence of Z band material appears to be essential for sarcomere formation. At 14 days of gestation the myotubes are more numerous in the limb than in the trunk. The presence of unmaturated fibrils with absence of the M line in the sarcomeres was observed. By day 18 of gestation the myotubes are wider and aggregate to form small bundles. The myofibrils were more numerous and the vesicles of the SR precursor, partly incrustated with ribosomes were dispersed among them. At day 22 of gestation the myotubes are thicker because of the myofibrils which are far more numberous. The sarcomeres were more fully developed, with the M line present. At day 28 of gestation and 3 days after delivery the already developed myofibers were present with a well organized SR system and fully developed sarcomeres.

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi

Related Publications

W Kilarski, and M Jakubowska
March 1967, The Journal of cell biology,
W Kilarski, and M Jakubowska
January 1972, Clinical orthopaedics and related research,
W Kilarski, and M Jakubowska
April 1979, The Journal of cell biology,
W Kilarski, and M Jakubowska
January 1959, The Journal of biophysical and biochemical cytology,
W Kilarski, and M Jakubowska
August 1967, Journal of ultrastructure research,
W Kilarski, and M Jakubowska
August 1975, Proceedings of the National Academy of Sciences of the United States of America,
W Kilarski, and M Jakubowska
May 1963, The Journal of cell biology,
W Kilarski, and M Jakubowska
August 1954, Experimental cell research,
W Kilarski, and M Jakubowska
September 1978, Archivum histologicum Japonicum = Nihon soshikigaku kiroku,
W Kilarski, and M Jakubowska
June 1952, The Anatomical record,
Copied contents to your clipboard!