Effects of potassium deficiency on renal function in the dog. 1969

P H Abbrecht

Serial determinations of the renal clearance for inulin and para-aminohippuric acid (PAH), maximum renal tubular reabsorptive rate for glucose, maximum urinary concentrating ability, total exchangeable potassium, extracellular volume, and plasma sodium and potassium concentrations were done in seven dogs before and after dietary potassium depletion. The same measurements were also made in two of the dogs during potassium repletion. Inulin and PAH clearances and transport maxima for glucose decreased progressively during depletion. These changes correlated well with both the duration of depletion and the extent of depletion as measured by total exchangeable potassium. Decreases in inulin and PAH clearance closely paralleled each other, suggesting that there might be a renal hemodynamic basis for both effects. The decreases in transport maxima for glucose were greater than those for inulin or PAH clearance, indicating the presence of a defect in the cellular transport mechanism for glucose. In the dogs that were repleted, renal function gradually returned to the predepletion state. No significant changes were found in extracellular volume or plasma sodium concentration during depletion. Renal concentrating ability decreased only moderately during depletion, with the decrease correlating better with plasma potassium concentration than with total exchangeable potassium. This finding contrasts with the marked decrease in concentrating ability and the severe polydipsia and polyuria found in animals depleted of potassium with the aid of corticosteroids. The results of the present study emphasize the importance of considering species differences and the method of producing depletion in interpreting studies of the effects of hypokalemia on renal function.

UI MeSH Term Description Entries
D007008 Hypokalemia Abnormally low potassium concentration in the blood. It may result from potassium loss by renal secretion or by the gastrointestinal route, as by vomiting or diarrhea. It may be manifested clinically by neuromuscular disorders ranging from weakness to paralysis, by electrocardiographic abnormalities (depression of the T wave and elevation of the U wave), by renal disease, and by gastrointestinal disorders. (Dorland, 27th ed) Hypopotassemia,Hypokalemias,Hypopotassemias
D007444 Inulin A starch found in the tubers and roots of many plants. Since it is hydrolyzable to FRUCTOSE, it is classified as a fructosan. It has been used in physiologic investigation for determination of the rate of glomerular function.
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007671 Kidney Concentrating Ability The ability of the kidney to excrete in the urine high concentrations of solutes from the blood plasma. Urine Concentrating Ability,Abilities, Kidney Concentrating,Abilities, Urine Concentrating,Ability, Kidney Concentrating,Ability, Urine Concentrating,Concentrating Abilities, Kidney,Concentrating Abilities, Urine,Concentrating Ability, Kidney,Concentrating Ability, Urine,Kidney Concentrating Abilities,Urine Concentrating Abilities
D007677 Kidney Function Tests Laboratory tests used to evaluate how well the kidneys are working through examination of blood and urine. Function Test, Kidney,Function Tests, Kidney,Kidney Function Test,Test, Kidney Function,Tests, Kidney Function
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011191 Potassium Deficiency A condition due to decreased dietary intake of potassium, as in starvation or failure to administer in intravenous solutions, or to gastrointestinal loss in diarrhea, chronic laxative abuse, vomiting, gastric suction, or bowel diversion. Severe potassium deficiency may produce muscular weakness and lead to paralysis and respiratory failure. Muscular malfunction may result in hypoventilation, paralytic ileus, hypotension, muscle twitches, tetany, and rhabomyolysis. Nephropathy from potassium deficit impairs the concentrating mechanism, producing POLYURIA and decreased maximal urinary concentrating ability with secondary POLYDIPSIA. (Merck Manual, 16th ed) Deficiencies, Potassium,Deficiency, Potassium,Potassium Deficiencies
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets

Related Publications

P H Abbrecht
May 1977, Circulation research,
P H Abbrecht
March 1946, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
P H Abbrecht
June 1967, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
P H Abbrecht
January 1964, The Journal of clinical investigation,
P H Abbrecht
December 1973, The Journal of clinical investigation,
P H Abbrecht
April 1967, The Journal of pharmacology and experimental therapeutics,
P H Abbrecht
April 1972, The American journal of physiology,
Copied contents to your clipboard!