Antagonism between high pressure and anesthetics in the thermal phase-transition of dipalmitoyl phosphatidylcholine bilayer. 1979

H Kamaya, and I Ueda, and P S Moore, and H Eyring

The antagonizing action of hydrostatic pressure against anesthesia is well known. The present study was undertaken to quantitate the effects of hydrostatic pressure and anesthetics upon the phase-transition temperature of dipalmitoyl phosphatidylcholine vesicles. The drugs used to anesthetize the phospholipid vesicles included an inhalation anesthetic, halothane, a dissociable local anesthetic, lidocaine and an undissociable local anesthetic, benzyl alcohol. All anesthetics decreased the phase-transition temperature dose-dependently. In the case of lidocaine, the depression was pH dependent and only uncharged molecules were effective. The application of hydrostatic pressure increased the phase-transition temperature both in the presence and the absence of anesthetics. The temperature-pressure relationship was linear over the entire pressure range studied up to 340 bars. Through the use of Clapeyron-Clausius equation, the volume change accompanying the phase-transition of the membrane was calculated to be 27.0 cm3/mol. Although the anesthetics decreased the phase-transition temperature, the molar volume change accompanying the phase-transition was not altered. The anesthetics displaced the temperature-pressure lines parallel to each other. The mole fraction of the anesthetics in the liquid crystalline membrane, calculated from the van't Hoff equation, was independent of pressure. This implies that pressure does not displace the anesthetics from the liquid membrane, and the partition of these agents remains constant. The volume change of the anesthetized phospholipid membranes is entirely dependent upon the phase-transition and not on the space occupied by the anesthetics.

UI MeSH Term Description Entries
D008012 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of PROCAINE but its duration of action is shorter than that of BUPIVACAINE or PRILOCAINE. Lignocaine,2-(Diethylamino)-N-(2,6-Dimethylphenyl)Acetamide,2-2EtN-2MePhAcN,Dalcaine,Lidocaine Carbonate,Lidocaine Carbonate (2:1),Lidocaine Hydrocarbonate,Lidocaine Hydrochloride,Lidocaine Monoacetate,Lidocaine Monohydrochloride,Lidocaine Monohydrochloride, Monohydrate,Lidocaine Sulfate (1:1),Octocaine,Xylesthesin,Xylocaine,Xylocitin,Xyloneural
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D011663 Pulmonary Surfactants Substances and drugs that lower the SURFACE TENSION of the mucoid layer lining the PULMONARY ALVEOLI. Surfactants, Pulmonary,Pulmonary Surfactant,Surfactant, Pulmonary
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D006874 Hydrostatic Pressure The pressure due to the weight of fluid. Hydrostatic Pressures,Pressure, Hydrostatic,Pressures, Hydrostatic
D000777 Anesthetics Agents capable of inducing a total or partial loss of sensation, especially tactile sensation and pain. They may act to induce general ANESTHESIA, in which an unconscious state is achieved, or may act locally to induce numbness or lack of sensation at a targeted site. Anesthetic,Anesthetic Agents,Anesthetic Drugs,Anesthetic Effect,Anesthetic Effects,Agents, Anesthetic,Drugs, Anesthetic,Effect, Anesthetic,Effects, Anesthetic
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

H Kamaya, and I Ueda, and P S Moore, and H Eyring
June 1988, Proceedings of the National Academy of Sciences of the United States of America,
H Kamaya, and I Ueda, and P S Moore, and H Eyring
September 1999, Journal of colloid and interface science,
H Kamaya, and I Ueda, and P S Moore, and H Eyring
January 1983, Zeitschrift fur Naturforschung. Section C, Biosciences,
H Kamaya, and I Ueda, and P S Moore, and H Eyring
January 1980, Acta biochimica et biophysica; Academiae Scientiarum Hungaricae,
H Kamaya, and I Ueda, and P S Moore, and H Eyring
February 1981, Biochimica et biophysica acta,
H Kamaya, and I Ueda, and P S Moore, and H Eyring
January 2002, Journal of liposome research,
H Kamaya, and I Ueda, and P S Moore, and H Eyring
August 1993, Journal of clinical laser medicine & surgery,
H Kamaya, and I Ueda, and P S Moore, and H Eyring
September 1978, Biophysical chemistry,
H Kamaya, and I Ueda, and P S Moore, and H Eyring
October 2009, Langmuir : the ACS journal of surfaces and colloids,
Copied contents to your clipboard!