Relation of amino acid transport to sodium-ion concentration. 1965

K P Wheeler, and Y Inui, and P F Hollenberg, and E Eavenson, and H N Christensen

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D002286 Carcinoma, Ehrlich Tumor A transplantable, poorly differentiated malignant tumor which appeared originally as a spontaneous breast carcinoma in a mouse. It grows in both solid and ascitic forms. Ehrlich Ascites Tumor,Ascites Tumor, Ehrlich,Ehrlich Tumor Carcinoma,Tumor, Ehrlich Ascites
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000621 Aminoisobutyric Acids A group of compounds that are derivatives of the amino acid 2-amino-2-methylpropanoic acid. Acids, Aminoisobutyric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K P Wheeler, and Y Inui, and P F Hollenberg, and E Eavenson, and H N Christensen
January 1991, Journal of bacteriology,
K P Wheeler, and Y Inui, and P F Hollenberg, and E Eavenson, and H N Christensen
January 1982, Comparative biochemistry and physiology. A, Comparative physiology,
K P Wheeler, and Y Inui, and P F Hollenberg, and E Eavenson, and H N Christensen
January 1974, Nauchnye doklady vysshei shkoly. Biologicheskie nauki,
K P Wheeler, and Y Inui, and P F Hollenberg, and E Eavenson, and H N Christensen
September 1995, Neuron,
K P Wheeler, and Y Inui, and P F Hollenberg, and E Eavenson, and H N Christensen
January 1981, Annals of clinical and laboratory science,
K P Wheeler, and Y Inui, and P F Hollenberg, and E Eavenson, and H N Christensen
September 1989, Kidney international,
K P Wheeler, and Y Inui, and P F Hollenberg, and E Eavenson, and H N Christensen
October 1970, Nutrition reviews,
K P Wheeler, and Y Inui, and P F Hollenberg, and E Eavenson, and H N Christensen
August 1965, Investigative ophthalmology,
K P Wheeler, and Y Inui, and P F Hollenberg, and E Eavenson, and H N Christensen
January 1970, Biologia,
K P Wheeler, and Y Inui, and P F Hollenberg, and E Eavenson, and H N Christensen
June 1982, Journal of cellular physiology,
Copied contents to your clipboard!