Regulation of thyroid ornithine decarboxylase by the polyamines. Induction of a protein inhibitor of ornithine decarboxylase by the end-products of the reaction. 1977

Y Friedman, and S Park, and S Levasseur, and G Burke

When spermidine, putrescine or 1,3-diaminopropane was injected (12.5 mumol/100 g body weight) into rats 1 h before thyrotropin, ornithine decarboxylase activity was increased by 75--150% over control levels. However, when greater than or equal to 75 mumol polyamine/100 g body weight was injected, thyrotropin-activated activity was inhibited by 70--95%. Multiple polyamine injections inhibited goitrogen-induced activity and gland weight increase by approx 35%. The polyamines also inhibited thyrotropin-activated rat thyroid ornithine decarboxylase in vitro in a dose-related fashion, with 50% inhibition occurring at 2--5 . 10(-4)M. The inhibition was not due to a direct effect on the enzyme. No stimulation was seen with low concentrations of polyamine. The polyamines had no effect on in vitro thyroid protein/RNA synthesis or glucose oxidation but had a biphasic effect on plasma membrane adenylate cyclase activity. A protein inhibitor to thyroid ornithine decarboxylase was generated in vivo by multiple injections of the polyamines into rats and in vitro by incubating bovine thyroid slices with 2--10 mM polyamine. The inhibitor was non-dialyzable, destroyed by boiling, and its formation was blocked in a dose-related fashion by cycloheximide. We conclude that: (1) thyroid ornithine decarboxylase is subject not only to positive control, but is also negatively regulated by its end-products, the polyamines, which induce a protein inhibitor to ornithine decarboxylase; (2) since gland growth is also inhibited under these conditions, the polyamine effect on thyroid ornithine decarboxylase may be biologically significant.

UI MeSH Term Description Entries
D008297 Male Males
D009955 Ornithine Decarboxylase A pyridoxal-phosphate protein, believed to be the rate-limiting compound in the biosynthesis of polyamines. It catalyzes the decarboxylation of ornithine to form putrescine, which is then linked to a propylamine moiety of decarboxylated S-adenosylmethionine to form spermidine. Ornithine Carboxy-lyase,Carboxy-lyase, Ornithine,Decarboxylase, Ornithine,Ornithine Carboxy lyase
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D011700 Putrescine A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. 1,4-Butanediamine,1,4-Diaminobutane,Tetramethylenediamine,1,4 Butanediamine,1,4 Diaminobutane
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013095 Spermidine A polyamine formed from putrescine. It is found in almost all tissues in association with nucleic acids. It is found as a cation at all pH values, and is thought to help stabilize some membranes and nucleic acid structures. It is a precursor of spermine.

Related Publications

Y Friedman, and S Park, and S Levasseur, and G Burke
June 1976, Proceedings of the National Academy of Sciences of the United States of America,
Y Friedman, and S Park, and S Levasseur, and G Burke
September 1986, FEBS letters,
Y Friedman, and S Park, and S Levasseur, and G Burke
December 1985, The Journal of biological chemistry,
Y Friedman, and S Park, and S Levasseur, and G Burke
June 1992, Microbiological reviews,
Y Friedman, and S Park, and S Levasseur, and G Burke
July 2010, Nihon rinsho. Japanese journal of clinical medicine,
Y Friedman, and S Park, and S Levasseur, and G Burke
June 1975, Endocrinology,
Y Friedman, and S Park, and S Levasseur, and G Burke
October 1977, Endocrinology,
Y Friedman, and S Park, and S Levasseur, and G Burke
January 1979, Current topics in cellular regulation,
Y Friedman, and S Park, and S Levasseur, and G Burke
September 1982, The Journal of pharmacology and experimental therapeutics,
Y Friedman, and S Park, and S Levasseur, and G Burke
July 1995, The Biochemical journal,
Copied contents to your clipboard!