Sex- and strain-dependent hepatic microsomal ethylmorphine N-demethylation in mice: the roles of type I binding and NADPH-cytochrome P-450 reductase. 1977

A P van den Berg, and J Noordhoek, and E M Savenije-Chapel, and E Koopman-Kool

The roles of type I binding and NADPH-cytochrome P-450 reductase in ethylmorphine demethylation were investigated in two strains of mice, using sex differences in these activities as a tool. In the CPB-SE strain, females metabolize ethylmorphine faster than males. Sex differences in cytochrome P-450 content and endogenous NADPH-cytochrome P-450 reductase activity were too small to account for this. On the other hand, the differences in the magnitudes of type I spectra and ethylmorphine-induced enhancement of cytochrome P-450 reduction were considerable larger than those in the rates of demethylation. All parameters, except endogenous cytochrome P-450 reduction, were modified in a similar way by testosterone pretreatment: in females they were depressed to the male level, whereas in males they remained unchanged. Castration had no effect in females and enhanced the activities in males. The CPB-V strain exhibited little or no sex differences in ethylmorphine demethylation, cytochrome P-450 content and endogenous cytochrome P-450 reduction. Testosterone pretreatment had little or no influence on these activities. Type I binding and reductase stimulation, however, showed sex differences, comparable to those observed in the CPB-SE strain, which were also abolished by testosterone. A relationship between reductase stimulation and type I binding was observed, which was, apparently, independent of sex or strain. It is concluded that androgen primarily influences the amount of cytochrome P-450-substrate complex formed, but that the reduction of this complex is not rate-limiting in the demethylation of ethylmorphine.

UI MeSH Term Description Entries
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010089 Oxidoreductases, N-Demethylating N-Demethylase,N-Demethylases,Oxidoreductases, N Demethylating,Demethylating Oxidoreductases, N,N Demethylase,N Demethylases,N Demethylating Oxidoreductases,N-Demethylating Oxidoreductases
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002369 Castration Surgical removal or artificial destruction of gonads. Gonadectomy,Castrations,Gonadectomies
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003579 Cytochrome Reductases Reductases, Cytochrome
D005037 Ethylmorphine-N-Demethylase A drug-metabolizing enzyme of the hepatic microsomal oxidase system which catalyzes the oxidation of the N-methyl group of ethylmorphine with the formation of formaldehyde. Ethylmorphine N Demethylase,Demethylase, Ethylmorphine N,N Demethylase, Ethylmorphine
D005260 Female Females

Related Publications

A P van den Berg, and J Noordhoek, and E M Savenije-Chapel, and E Koopman-Kool
December 1983, Biochemical pharmacology,
A P van den Berg, and J Noordhoek, and E M Savenije-Chapel, and E Koopman-Kool
January 1971, Pharmacology,
A P van den Berg, and J Noordhoek, and E M Savenije-Chapel, and E Koopman-Kool
June 1975, FEBS letters,
A P van den Berg, and J Noordhoek, and E M Savenije-Chapel, and E Koopman-Kool
January 1973, Drug metabolism and disposition: the biological fate of chemicals,
A P van den Berg, and J Noordhoek, and E M Savenije-Chapel, and E Koopman-Kool
March 1979, Biochimica et biophysica acta,
A P van den Berg, and J Noordhoek, and E M Savenije-Chapel, and E Koopman-Kool
May 1976, Life sciences,
A P van den Berg, and J Noordhoek, and E M Savenije-Chapel, and E Koopman-Kool
January 1981, The Journal of biological chemistry,
A P van den Berg, and J Noordhoek, and E M Savenije-Chapel, and E Koopman-Kool
December 1986, The Biochemical journal,
A P van den Berg, and J Noordhoek, and E M Savenije-Chapel, and E Koopman-Kool
July 1984, The Journal of biological chemistry,
A P van den Berg, and J Noordhoek, and E M Savenije-Chapel, and E Koopman-Kool
May 1978, Biochimica et biophysica acta,
Copied contents to your clipboard!