Phosphorylation from inorganic phosphate and ATP synthesis of sarcoplasmic membranes. 1977

F U Beil, and D von Chak, and W Hasselbach

The incorporation of inorganic phosphate in the fragmented sarcoplasmic membranes induced by the removal of calcium ions bound to high affinity binding sites at the cytoplasmic surface of the membranes gives rise to the formation of two species of phosphoenzyme. The properties of the phosphoproteins formed depend on the absence or the presence of a gradient of calcium ions across the membranes. The phosphoenzymes differ by the affinity of the protein for phosphate, the enthalpy of formation, the kinetics of phosphate incorporation, and by the sensitivity to ionophores and ADP. In the absence of a calcium gradient less than 0.5 nmol phosphoenzyme per mg protein are formed in media containing less than 5 mM phosphate at pH7 and 10 degrees C. Under the same conditions approximately 2 nmol of phosphoenzyme per mg protein are formed with an initial rate of 0.5 nmol mg-1-s-1 when a calcium gradient exists. When the gradient is abolished by the addition of the ionophore X537A, the level of phosphoprotein drops to the same value as observed in the absence of a gradient. On addition of ADP at concentrations increasing from 0.3 to 10 muM continuous ATP formation is activated to its maximum rate, and simultaneously, the level of phosphoprotein declines. These concentrations of ADP scarcely affect phosphoprotein formed in the absence of a gradient, the phosphoryl residue of which is displaced when the concentration of ADP exceeds 10 micrometer without the formation of an equivalent amount of ATP. Minimum mechanisms for the formation of gradient-independent and gradient-dependent phosphoprotein are discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010750 Phosphoproteins Phosphoprotein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

F U Beil, and D von Chak, and W Hasselbach
January 1977, Zeitschrift fur Naturforschung. Section C, Biosciences,
F U Beil, and D von Chak, and W Hasselbach
November 1987, The Biochemical journal,
F U Beil, and D von Chak, and W Hasselbach
November 1984, FEBS letters,
F U Beil, and D von Chak, and W Hasselbach
January 1982, Annals of the New York Academy of Sciences,
F U Beil, and D von Chak, and W Hasselbach
October 2007, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
F U Beil, and D von Chak, and W Hasselbach
February 1997, The Biochemical journal,
F U Beil, and D von Chak, and W Hasselbach
October 1974, European journal of biochemistry,
F U Beil, and D von Chak, and W Hasselbach
November 1972, Archives of biochemistry and biophysics,
Copied contents to your clipboard!