Properties of the complex between histone H1 and poly(ADP-ribose synthesised in HeLa cell nuclei. 1977

P R Stone, and W S Lorimer, and W R Kidwell

Preparations of H1 histone from HeLa cell nuclei incubated with [3H]NAD to permit poly(ADP-ribose) synthesis were electrophoresed on polyacrylamide gels. The incorporated radioactivity migrated as a sharply defined peak in association with a protein band which moved more slowly than H1, the major protein component. The following observations indicate that this complex is composed of two molecules of H1 and a single chain of poly(ADP-ribose) with one detectable covalent linkage of polymer to protein. 1. The [14C]arginine/[3H]lysine ratio is identical in H1 histone and in the protein moiety of the complex. 2. Protein is displaced from H1 histone to the complex during poly(ADP-ribose) synthesis. At least 90% of the protein in the complex (stainable protein and labelled protein) is derived from H1. 3. Sedimentation rate studies indicate a molecular weight of the complex about twice that of H1 histone. 4. The average chain length of the polymer is 15 ADP-ribose units and there are 7--8 ADP-ribose units for each molecule of H1 histone in the 'complex'. 5. Poly(ADP-ribose) glycohydrolase, which hydrolyses the polymer exoglycosidically from the AMP terminus, degrades the complex producing ADP-ribose and mono-ADP-ribosylated H1 histone which co-electrophoreses with unmodified H1. Although only one covalent linkage between protein and polymer has been detected, the 'complex' does not dissociate when electrophoresed on dodecylsulfate gels. Nor can the noncovalently linked H1 histone of the complex readily exchange with free H1. Complex formation does not occur when purified poly(ADP-ribose) and H1 are mixed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009702 Nucleoside Diphosphate Sugars Diphosphate Sugars, Nucleoside,Sugars, Nucleoside Diphosphate
D011064 Poly Adenosine Diphosphate Ribose A polynucleotide formed from the ADP-RIBOSE moiety of nicotinamide-adenine dinucleotide (NAD) by POLY(ADP-RIBOSE) POLYMERASES. Poly ADP Ribose,Poly(ADP-Ribose),Poly-ADPR,Poly-Adenosine Diphosphate-Ribose,ADP Ribose, Poly,Diphosphate-Ribose, Poly-Adenosine,Poly ADPR,Ribose, Poly ADP
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

P R Stone, and W S Lorimer, and W R Kidwell
January 1987, The Italian journal of biochemistry,
P R Stone, and W S Lorimer, and W R Kidwell
August 1998, Biochimica et biophysica acta,
P R Stone, and W S Lorimer, and W R Kidwell
January 1977, Biochemical and biophysical research communications,
P R Stone, and W S Lorimer, and W R Kidwell
December 1980, European journal of biochemistry,
P R Stone, and W S Lorimer, and W R Kidwell
November 1978, European journal of biochemistry,
P R Stone, and W S Lorimer, and W R Kidwell
January 1983, Princess Takamatsu symposia,
P R Stone, and W S Lorimer, and W R Kidwell
November 1975, Archives of biochemistry and biophysics,
P R Stone, and W S Lorimer, and W R Kidwell
May 1981, The Journal of biological chemistry,
P R Stone, and W S Lorimer, and W R Kidwell
August 1994, European journal of biochemistry,
Copied contents to your clipboard!