Diaphorases from Aerobacter aerogenes. 1966

C Bernofsky, and R C Mills

Bernofsky, Carl (The University of Kansas, Kansas City), and Russell C. Mills. Diaphorases from Aerobacter aerogenes. J. Bacteriol. 92:1404-1414. 1966.-Five enzymes which catalyze the reduction of 2,6-dichlorophenol-indophenol by reduced nicotinamide adenine dinucleotide (NADH(2)) have been separated from sonic extracts of Aerobacter aerogenes B199 by diethylaminoethyl (DEAE) cellulose chromatography. Three major chromatographic fractions (enzymes I, II, and III) account for most of the activity in the extract. Of the two minor fractions, one is associated with cytochrome b(1). The other is extremely labile, and was not studied further. The chromatographed diaphorases appear to have a specific requirement for flavin mononucleotide. They are also readily inactivated by dilution; however, this can be prevented by a combination of phosphate buffer, bovine serum albumin, and flavin mononucleotide. The different enzymes are clearly distinguishable by their activities with NADH(2) and reduced nicotinamide adenine dinucleotide phosphate (NADPH(2)) in the presence of various electron acceptors (2,6-dichlorophenol-indophenol, ferricyanide, menadione, and cytochrome c), and by their responses to inhibitors (amobarbital, antimycin A, Atabrine, p-chloromercuribenzenesulfonate, dicumarol, and 2,4-dinitrophenol). With 2,6-dichlorophenol-indophenol as acceptor, enzymes I, II, and III have comparable activities with either NADH(2) or NADPH(2). With menadione and ferricyanide as acceptors, enzymes II and III exhibit very high, NADH(2)-specific activities. When cytochrome c is the acceptor, however, enzyme III shows greater activity with NADPH(2) as the electron donor. Ferricyanide is the most active acceptor for the cytochrome b(1)-containing fraction. Coenzyme Q(6) does not appear to serve as an acceptor. All the diaphorases, with the exception of that in the cytochrome b(1)-containing fraction, are inhibited by p-chloromercuribenzenesulfonate. Amobarbital is relatively ineffective and inhibits only the indophenol reductase activity of enzyme I. The menadione reductase activity of enzymes I, and II, and the diaphorases in the cytochrome b(1)-containing fraction are strongly inhibited by antimycin A, 2,4-dinitrophenol, dicumarol, and Atabrine. However, the menadione reductase activity of enzyme III is affected only by the last three of these inhibitors. The diaphorases in sonic-treated extracts do not appear to be associated with a particulate fraction.

UI MeSH Term Description Entries
D008058 Dihydrolipoamide Dehydrogenase A flavoprotein containing oxidoreductase that catalyzes the reduction of lipoamide by NADH to yield dihydrolipoamide and NAD+. The enzyme is a component of several MULTIENZYME COMPLEXES. Lipoamide Dehydrogenase,NAD Diaphorase,NADH Diaphorase,Diaphorase (Lipoamide Dehydrogenase),Dihydrolipoyl Dehydrogenase,Glycine Decarboxylase Complex L-Protein,L-Protein, Glycine Decarboxylase Complex,Lipoamide Dehydrogenase, Valine,Lipoic Acid Dehydrogenase,Lipoyl Dehydrogenase,Valine Lipoamide Dehydrogenase,Dehydrogenase, Dihydrolipoamide,Dehydrogenase, Dihydrolipoyl,Dehydrogenase, Lipoamide,Dehydrogenase, Lipoic Acid,Dehydrogenase, Lipoyl,Dehydrogenase, Valine Lipoamide,Diaphorase, NAD,Diaphorase, NADH,Glycine Decarboxylase Complex L Protein
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004754 Enterobacter Gram-negative gas-producing rods found in feces of humans and other animals, sewage, soil, water, and dairy products.
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide
D005292 Ferricyanides Inorganic salts of the hypothetical acid, H3Fe(CN)6.
D005486 Flavin Mononucleotide A coenzyme for a number of oxidative enzymes including NADH DEHYDROGENASE. It is the principal form in which RIBOFLAVIN is found in cells and tissues. FMN,Flavin Mononucleotide Disodium Salt,Flavin Mononucleotide Monosodium Salt,Flavin Mononucleotide Monosodium Salt, Dihydrate,Flavin Mononucleotide Sodium Salt,Riboflavin 5'-Monophosphate,Riboflavin 5'-Phosphate,Riboflavin Mononucleotide,Sodium Riboflavin Phosphate,5'-Monophosphate, Riboflavin,5'-Phosphate, Riboflavin,Mononucleotide, Flavin,Mononucleotide, Riboflavin,Phosphate, Sodium Riboflavin,Riboflavin 5' Monophosphate,Riboflavin 5' Phosphate,Riboflavin Phosphate, Sodium
D000963 Antimetabolites Drugs that are chemically similar to naturally occurring metabolites, but differ enough to interfere with normal metabolic pathways. (From AMA Drug Evaluations Annual, 1994, p2033) Antimetabolite
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.

Related Publications

C Bernofsky, and R C Mills
March 1961, Biochimica et biophysica acta,
C Bernofsky, and R C Mills
December 1959, The Journal of biological chemistry,
C Bernofsky, and R C Mills
February 1956, Archives of biochemistry and biophysics,
C Bernofsky, and R C Mills
January 1975, Methods in enzymology,
C Bernofsky, and R C Mills
January 1978, Methods in enzymology,
C Bernofsky, and R C Mills
August 1947, Bulletin of the U.S. Army Medical Department. United States. Army. Medical Department,
C Bernofsky, and R C Mills
September 1961, Biochimica et biophysica acta,
C Bernofsky, and R C Mills
March 1970, Journal of bacteriology,
C Bernofsky, and R C Mills
March 1972, European journal of biochemistry,
C Bernofsky, and R C Mills
January 1962, Microbiologia espanola,
Copied contents to your clipboard!