Thermodynamics, the structure of integral membrane proteins, and transport. 1977

S J Singer

Membranes are structures whose lipid and protein components are at, or close to, equilibrium in the plane of the membrane, but are not at equilibrium across the membrane. The thermodynamic tendency of ionic and highly polar molecules to be in contact with water rather than with nonpolar media (hydrophilic interactions) is important in determining these equilibrium and nonequilibrium states. In this paper, we speculate about the structures and orientations of integral proteins in a membrane, and about how the equilibrium and nonequilibrium features of such structures and orientations might be influenced by the special mechanisms of biosynthesis, processing, and membrane insertion of these proteins. The relevance of these speculations to the mechanisms of the translocation event in membrane transport is discussed, and specific protein models of transport that have been proposed are analyzed.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

S J Singer
January 1991, Molecular microbiology,
S J Singer
April 1985, Nihon rinsho. Japanese journal of clinical medicine,
S J Singer
January 2015, The Journal of eukaryotic microbiology,
S J Singer
February 2008, Fukuoka igaku zasshi = Hukuoka acta medica,
S J Singer
January 1981, Duodecim; laaketieteellinen aikakauskirja,
Copied contents to your clipboard!