| D008564 |
Membrane Potentials |
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). |
Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences |
|
| D008567 |
Membranes, Artificial |
Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. |
Artificial Membranes,Artificial Membrane,Membrane, Artificial |
|
| D010084 |
Oxidation-Reduction |
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). |
Redox,Oxidation Reduction |
|
| D010655 |
Phenylenediamines |
Aniline compounds that contain two amino groups. They are used as a precursor in the synthesis of HETEROCYCLIC COMPOUNDS and POLYMERS. p-Phenylenediamine is used in the manufacture of HAIR DYES and is an ALLERGEN. |
|
|
| D010851 |
Picrates |
Salts or esters of PICRIC ACID. |
|
|
| D005025 |
Ethylene Dichlorides |
Toxic, chlorinated, saturated hydrocarbons. Include both the 1,1- and 1,2-dichloro isomers. The latter is considerably more toxic. It has a sweet taste, ethereal odor and has been used as a fumigant and intoxicant among sniffers. Has many household and industrial uses. |
Dichloroethanes,Dichlorides, Ethylene |
|
| D000838 |
Anions |
Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. |
Anion |
|
| D001693 |
Biological Transport, Active |
The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. |
Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill |
|