Effect of sex and gonadal hormones on rat plasma lipids during the development of an essential fatty acid deficiency. 1966

R L Lyman, and R Ostwald, and P Bouchard, and A Shannon

1. Male, female and castrated rats treated with oestradiol (30mug./week) or testosterone (2mg./week) were given an essential fatty acid-deficient diet containing 10% of hydrogenated coconut oil for 9 weeks. The concentrations and fatty acid composition of plasma phospholipids, cholesteryl esters and triglycerides were determined. 2. Between the second and third weeks of the deficiency, concentrations of plasma cholesteryl esters, phospholipids and triglycerides decreased, then remained relatively constant. There were no significant differences between males and females, but oestradiol caused a significant rise in plasma phospholipids and triglycerides as compared with testosterone-treated animals. 3. During the first 2 weeks of the deficiency, linoleic acid in the plasma lipids of all groups decreased to low concentrations and changed very little thereafter. 4. Female rats maintained higher percentages and concentrations of arachidonic acid and stearic acid in plasma phospholipids and arachidonic acid in cholesteryl esters than did males. Males had higher proportions of eicosatrienoic acid and oleic acid. There was no sex difference in the fatty acid composition of plasma triglycerides. 5. Oestradiol-treated rats had concentrations of cholesteryl and phospholipid arachidonate comparable with those of female rats and higher than the testosterone-treated group. Eicosatrienoic acid in the oestradiol-treated rats was high and resembled that of the male rats, apparently because of the higher concentration of plasma phospho lipids in this group. 6. Supplementation of the essential fatty acid-deficient rats with linoleate restored plasma cholesteryl and phospholipid linoleate and arachidonate nearly to normal concentrations in a single day. The increase in arachidonic acid in these fractions was accompanied by a similar quantitative decrease in eicosatrienoic acid. 7. These sex differences appear to be related to the smaller size of the female rat and to a more direct influence of oestradiol on the formation or maintenance of phospholipids rich in arachidonic acid.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002369 Castration Surgical removal or artificial destruction of gonads. Gonadectomy,Castrations,Gonadectomies
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003677 Deficiency Diseases A condition produced by dietary or metabolic deficiency. The term includes all diseases caused by an insufficient supply of essential nutrients, i.e., protein (or amino acids), vitamins, and minerals. It also includes an inadequacy of calories. (From Dorland, 27th ed; Stedman, 25th ed) Deficiency Disease,Disease, Deficiency,Diseases, Deficiency
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005228 Fatty Acids, Essential Long chain organic acid molecules that must be obtained from the diet. Examples are LINOLEIC ACIDS and LINOLENIC ACIDS. Acids, Essential Fatty,Essential Fatty Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone
D014280 Triglycerides An ester formed from GLYCEROL and three fatty acid groups. Triacylglycerol,Triacylglycerols,Triglyceride

Related Publications

R L Lyman, and R Ostwald, and P Bouchard, and A Shannon
September 1982, Biology of reproduction,
R L Lyman, and R Ostwald, and P Bouchard, and A Shannon
May 1967, The Journal of nutrition,
R L Lyman, and R Ostwald, and P Bouchard, and A Shannon
October 1974, Archives of oral biology,
R L Lyman, and R Ostwald, and P Bouchard, and A Shannon
February 1988, Lipids,
R L Lyman, and R Ostwald, and P Bouchard, and A Shannon
January 1974, Acta physiologica latino americana,
R L Lyman, and R Ostwald, and P Bouchard, and A Shannon
July 1990, Zhonghua fu chan ke za zhi,
R L Lyman, and R Ostwald, and P Bouchard, and A Shannon
March 1976, Lipids,
R L Lyman, and R Ostwald, and P Bouchard, and A Shannon
April 1970, The Journal of nutrition,
R L Lyman, and R Ostwald, and P Bouchard, and A Shannon
January 1976, Journal of supramolecular structure,
Copied contents to your clipboard!