Onset of contractility in cardiac muscle. 1966

A J Brady

1. A technique is described whereby (i) quick stretches and releases of controlled velocity, amplitude and time of onset can be applied to muscle. (ii) Releases from isometric to isotonic contraction can be performed at controlled delays relative to the stimulus, and displayed on a delayed expanded oscilloscope sweep. An isotonic lever system with an equivalent mass of 12.8 mg is described.2. Quick stretch of rabbit or cat papillary muscle after excitation does not result in a level of tension equal to or greater than normal peak isometric tension appropriate to the stretched length. Stretches applied during the first half of the rising phase of tension development give responses nearly identical to the same stretches applied before the stimulus (indicating that Starling's Law of the heart holds until this time). Stretches applied in the later phase of tension development or during relaxation result in diminished peak isometric tensions or accelerated relaxation.3. The rate of tension development following quick releases of isometrically contracting muscle to zero tension is not maximal until the releases are made 150-200 msec after excitation.4. Shortening velocity with light afterloads is not initially maximal nor constant for an appreciable period of time. The shortening velocity with heavy afterloads reaches its maximum more rapidly when the load is not lifted within the first 200 msec of a contraction which, if maintained isometric, would have required 400-500 msec to reach peak tension. With these heavier loads, a period of 100-200 msec of constant shortening velocity may occur.5. Freeloaded isotonic contractions show an inflexion in their shortening curves occurring 150-200 msec after excitation.6. Maximum rate of isotonic shortening following releases from isometric to isotonic contraction with a given load is not maximal until the releases occur about 200 msec after the stimulus.7. It is concluded that contractility in cardiac muscle is relatively slow in its onset with maximum capacity to shorten occurring about midway through the rising phase of isometric tension development.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016276 Ventricular Function The hemodynamic and electrophysiological action of the HEART VENTRICLES. Function, Ventricular,Functions, Ventricular,Ventricular Functions

Related Publications

A J Brady
September 1970, Circulation research,
A J Brady
July 1967, The Journal of general physiology,
A J Brady
January 1980, Critical reviews in bioengineering,
A J Brady
January 1972, Acta cardiologica,
A J Brady
December 2006, European journal of pharmacology,
A J Brady
January 1983, Comparative biochemistry and physiology. A, Comparative physiology,
A J Brady
March 1980, Sheng li ke xue jin zhan [Progress in physiology],
A J Brady
January 1989, Basic research in cardiology,
A J Brady
June 1987, Journal of cardiovascular pharmacology,
A J Brady
January 1962, Federation proceedings,
Copied contents to your clipboard!