Evidence for a double hit process in photosystem II based on fluorescence studies. 1977

P Joliot, and A Joliot

1. The amplitudes of the fast (0-20 microseconds) and slow (20 microseconds-2 ms) fluorescence rise induced by a 2 microseconds flash have been measured as a function of the energy of the flash in chloroplasts inhibited by 3(3,4-dichlorophenyl)-1, 1-dimethylurea. The saturation curve for the slow rise shows a characteristic lag which is not observed for the fast fluorescence rise. This lag indicates that Photosystem II centers undergo a double hit process which implies that (a), each photocenter includes two acceptors Q1 and Q2; (B), after the first hit, oxidized chlorophyll Chl+ is reduced by a secondary acceptor Y in a time shor compared to the duration of the flash; (c), after the second hit, Chl+ is reduced by another secondary donor, D. 2. According to Den Haan et al. (1974) Biochim. Biophys. Acta 368, 409-421), hydroxylamine destroys the secondary donor responsible for the fast reduction of Chl+. In the presence of 3 mM hydroxylamine, only the secondary donor D is functional and a flash induses mainly a single hit process. 3. The saturation curves for the fast and the slow rises have been studied in the presence of 3(3,4-dichlorophenyl)-1, 1-dimethylurea for a second actinic flash given 2.5 s after a first saturating one. The large decrease in the half-saturating energy indicates the existence of efficient energy transfer occuring between potosynthetic units. 4. Two alternate hypotheses are discussed (a) in which D is an auxiliary donor and (b) in which D is included in the main electron transfer chain.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D011789 Quantum Theory The theory that the radiation and absorption of energy take place in definite quantities called quanta (E) which vary in size and are defined by the equation E Quantum Theories,Theories, Quantum,Theory, Quantum
D002734 Chlorophyll Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms. Phyllobilins,Chlorophyll 740
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005292 Ferricyanides Inorganic salts of the hypothetical acid, H3Fe(CN)6.

Related Publications

P Joliot, and A Joliot
January 1978, Biochemical Society transactions,
P Joliot, and A Joliot
June 2016, International journal of molecular sciences,
P Joliot, and A Joliot
January 1975, Biochimica et biophysica acta,
P Joliot, and A Joliot
August 2021, Photosynthesis research,
P Joliot, and A Joliot
December 2013, Biochemistry. Biokhimiia,
Copied contents to your clipboard!