Transcapillary fluid movement during vasopressin and bradykinin infusion. 1967

J N Diana, and R Colantino, and F J Haddy

UI MeSH Term Description Entries
D007866 Leg The inferior part of the lower extremity between the KNEE and the ANKLE. Legs
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001810 Blood Volume Volume of circulating BLOOD. It is the sum of the PLASMA VOLUME and ERYTHROCYTE VOLUME. Blood Volumes,Volume, Blood,Volumes, Blood
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D002200 Capillary Resistance The vascular resistance to the flow of BLOOD through the CAPILLARIES portions of the peripheral vascular bed. Capillary Resistances,Resistance, Capillary,Resistances, Capillary
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005268 Femoral Vein The vein accompanying the femoral artery in the same sheath; it is a continuation of the popliteal vein and becomes the external iliac vein. Femoral Veins,Vein, Femoral,Veins, Femoral

Related Publications

J N Diana, and R Colantino, and F J Haddy
August 1981, Canadian journal of physiology and pharmacology,
J N Diana, and R Colantino, and F J Haddy
July 1973, Microvascular research,
J N Diana, and R Colantino, and F J Haddy
December 1979, The Journal of physiology,
J N Diana, and R Colantino, and F J Haddy
January 1969, Pflugers Archiv : European journal of physiology,
J N Diana, and R Colantino, and F J Haddy
January 1986, Annales francaises d'anesthesie et de reanimation,
J N Diana, and R Colantino, and F J Haddy
November 1983, Experimental neurology,
J N Diana, and R Colantino, and F J Haddy
May 1985, Microvascular research,
J N Diana, and R Colantino, and F J Haddy
November 1976, Microvascular research,
J N Diana, and R Colantino, and F J Haddy
February 1982, The American journal of physiology,
J N Diana, and R Colantino, and F J Haddy
June 1969, The Japanese journal of physiology,
Copied contents to your clipboard!