Studies on the coumarin anticoagulant drugs: interaction of human plasma albumin and warfarin sodium. 1967

R A O'Reilly

In studies by continuous flow electrophoresis the coumarin anticoagulant drug warfarin sodium was found to be bound solely to the albumin fraction of the plasma proteins. The interaction was studied in detail by equilibrium dialysis of solutions of crystalline human plasma albumin and warfarin sodium. Analysis of the data showed that albumin possesses a single strong binding site for warfarin with an association constant of 154,000 at 3 degrees C and secondary classes of several sites with a much lower affinity. The free energy of binding for the first anion determined at 3 degrees and 37 degrees C was -6.54 and -7.01 kcal per mole, respectively. The standard enthalpy change for the interaction was -3.48 kcal per mole, and the entropy change was +11.2 U. The negative enthalpy change was surprisingly large and the positive entropy change small for an anion-albumin interaction, suggesting significant nonionic binding. The inability to saturate the albumin binding sites, even when high concentrations of warfarin were used, is consistent with a reversible configurational alteration of the albumin molecule during the binding process. The thermodynamic data indicate that the albumin binding sites for warfarin sodium are formed during the process of binding, rather than being performed as in antigen-antibody reactions. The strength of the binding process suggests that many of the pharmacodynamic characteristics of warfarin sodium in man are determined by its strong interaction with plasma albumin. Such correlations of the physicochemical interactions and biologic effects of the coumarin anticoagulant drugs should lead to a better understanding of their mechanisms of action.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012709 Serum Albumin A major protein in the BLOOD. It is important in maintaining the colloidal osmotic pressure and transporting large organic molecules. Plasma Albumin,Albumin, Serum
D014859 Warfarin An anticoagulant that acts by inhibiting the synthesis of vitamin K-dependent coagulation factors. Warfarin is indicated for the prophylaxis and/or treatment of venous thrombosis and its extension, pulmonary embolism, and atrial fibrillation with embolization. It is also used as an adjunct in the prophylaxis of systemic embolism after myocardial infarction. Warfarin is also used as a rodenticide. 4-Hydroxy-3-(3-oxo-1-phenylbutyl)-2H-1-benzopyran-2-one,Aldocumar,Apo-Warfarin,Coumadin,Coumadine,Gen-Warfarin,Marevan,Tedicumar,Warfant,Warfarin Potassium,Warfarin Sodium,Potassium, Warfarin,Sodium, Warfarin

Related Publications

R A O'Reilly
September 1953, Proceedings of the staff meetings. Mayo Clinic,
R A O'Reilly
January 1989, Journal of pharmaceutical and biomedical analysis,
R A O'Reilly
January 1955, British medical bulletin,
R A O'Reilly
August 1954, A.M.A. archives of internal medicine,
R A O'Reilly
February 1965, Minerva cardioangiologica,
R A O'Reilly
October 1984, The Journal of pharmacy and pharmacology,
R A O'Reilly
April 1967, California medicine,
Copied contents to your clipboard!