Effects of subcortical lesions on visual intensity discriminations in rats. 1977

C R Legg, and A Cowey

The role of several subcortical structures in visual intensity discrimination was examined by comparing the effects of localized lesions on a variety of intensity discriminations. In Experiment 1 light avoidance was unimpaired after lesions of the ventral lateral geniculate nucleus (LGNv), nucleus lateralis posterior (TLP), nucleus posterior of Gurdijian (NPG), dorsal pretectum (PTd), and ventral pretectum (PTv). The LGNv, TLP, NPG and PTv, but not the PTd, groups were impaired on a simultaneous black versus white (BW) discrimination in Experiment 2. None of these groups was impaired on a horizontal versus vertical discrimination (HV). The TLP group showed a transient impairment on a successive light versus dark discrimination, not present with the LGNv and NPG groups (Experiment 3). In Experiment 4 all three groups were impaired on a successive BW discrimination. In Experiment 5 rats with LGNv lesions but not with TLP lesions had elevated relative brightness thresholds. Both groups had normal absolute thresholds. The results are related to the possibility that information about intensity and pattern is coded in separate visual pathways.

UI MeSH Term Description Entries
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004192 Discrimination, Psychological Differential response to different stimuli. Discrimination, Psychology,Psychological Discrimination
D004193 Discrimination Learning Learning that is manifested in the ability to respond differentially to various stimuli. Discriminative Learning,Discrimination Learnings,Discriminative Learnings,Learning, Discrimination,Learning, Discriminative
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic
D013787 Thalamic Nuclei Several groups of nuclei in the thalamus that serve as the major relay centers for sensory impulses in the brain. Nuclei, Thalamic
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

C R Legg, and A Cowey
January 2006, Reviews in the neurosciences,
C R Legg, and A Cowey
February 1968, Journal of comparative and physiological psychology,
C R Legg, and A Cowey
July 1970, Physiology & behavior,
C R Legg, and A Cowey
April 1959, Journal of comparative and physiological psychology,
C R Legg, and A Cowey
January 1975, Acta neurobiologiae experimentalis,
C R Legg, and A Cowey
March 1984, Behavioural brain research,
C R Legg, and A Cowey
August 1958, Journal of comparative and physiological psychology,
C R Legg, and A Cowey
January 1981, Experimental brain research,
C R Legg, and A Cowey
July 1977, The Journal of comparative neurology,
C R Legg, and A Cowey
September 1968, Life sciences,
Copied contents to your clipboard!