The behavior of purified egg lecithin in water has been investigated in relation to the quantity of water present and the temperature. The complete binary phase diagram of egg lecithin-water is presented as well as X-ray diffraction data on selected mixtures. Dry egg lecithin is present in at least partially crystalline form until about 40 degrees C. Above this temperature it forms a "wax-like" phase up to about 88 degrees C. From 88 to 109 degrees C it forms a viscous isotropic phase which gives face-centered cubic spacings by X-ray analysis. Above 110 degrees C its texture is "neat" and the structure is assumed to be lamellar until its final melting point at 231 degrees C. Hydrated lecithin forms (except for a small zone of cubic phase at low water concentrations and high temperature) a lamellar liquid crystalline phase. This phase contains up to 45% water at 20 degrees C. Mixtures containing more water separate into two phases, the lamellar liquid crystalline phase and water. In the melting curve of hydrated lecithin a eutectic is noted at about 16% water and the cubic phase seen when less water is present disappears at this composition of the mixture. These facts, along with previous vapor pressure measurements, suggest that there is a structural change at about 16% water. X-ray diffraction studies of lecithin at 24 degrees C and calculations from these data suggest that the reason for this may be the presence of a "free water layer" when more than 16% water is present.