Prophage induction by liver microsomal metabolites of aflatoxin B1 in lysogenic Pseudomonas aeruginosa. 1984

I R Patel, and K K Rao

Microsomal metabolites of aflatoxin B1 (AFB1) causing induction of prophage in lysogenic strain of Pseudomonas aeruginosa SM was studied. Reduction of culture turbidity was determined at various concentrations of toxin. The effect of the toxin was also studied on deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and protein synthesis. AFB1 at the concentration of 50 micrograms/ml reduced initial turbidity to approximately 90% in 4 h. DNA synthesis stopped completely in the first hour but reappeared due to induction of the temperate phage. Soon after induction both RNA and protein synthesis continued but later little or no net synthesis of these macromolecules occurred. Plaque forming units (pfu) were increased approximately 90 times at 2 h as compared to the control. Testing of the effect of AFB1 on the non-lysogenic, sensitive strain demonstrated that although there was no significant decrease in culture turbidity at 50 micrograms/ml concentration of AFB1, DNA synthesis stopped completely within 1 h, while RNA and protein synthesis were increasing throughout the test interval. It has been concluded that the liver microsomal fraction of AFB1 caused induction of prophage in lysogenic cells and inhibited DNA synthesis significantly in non-lysogenic cells.

UI MeSH Term Description Entries
D008242 Lysogeny The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium. Integration, Prophage,Prophage Integration,Integrations, Prophage,Prophage Integrations
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D000348 Aflatoxins Furano-furano-benzopyrans that are produced by ASPERGILLUS from STERIGMATOCYSTIN. They are structurally related to COUMARINS and easily oxidized to an epoxide form to become ALKYLATING AGENTS. Members of the group include AFLATOXIN B1; aflatoxin B2, aflatoxin G1, aflatoxin G2; AFLATOXIN M1; and aflatoxin M2. Aflatoxin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D014775 Virus Activation The mechanism by which latent viruses, such as genetically transmitted tumor viruses (PROVIRUSES) or PROPHAGES of lysogenic bacteria, are induced to replicate and then released as infectious viruses. It may be effected by various endogenous and exogenous stimuli, including B-cell LIPOPOLYSACCHARIDES, glucocorticoid hormones, halogenated pyrimidines, IONIZING RADIATION, ultraviolet light, and superinfecting viruses. Prophage Excision,Prophage Induction,Virus Induction,Viral Activation,Activation, Viral,Activation, Virus,Activations, Viral,Activations, Virus,Excision, Prophage,Excisions, Prophage,Induction, Prophage,Induction, Virus,Inductions, Prophage,Inductions, Virus,Prophage Excisions,Prophage Inductions,Viral Activations,Virus Activations,Virus Inductions
D016604 Aflatoxin B1 A potent hepatotoxic and hepatocarcinogenic mycotoxin produced by the Aspergillus flavus group of fungi. It is also mutagenic, teratogenic, and causes immunosuppression in animals. It is found as a contaminant in peanuts, cottonseed meal, corn, and other grains. The mycotoxin requires epoxidation to aflatoxin B1 2,3-oxide for activation. Microsomal monooxygenases biotransform the toxin to the less toxic metabolites aflatoxin M1 and Q1. Aflatoxin B(1),Aflatoxin B,Aflatoxin B1 Dihydrochloride, (6aR-cis)-Isomer,Aflatoxin B1, (6aR-cis)-Isomer, 14C-Labeled,Aflatoxin B1, (6aR-cis)-Isomer, 2H-Labeled,Aflatoxin B1, (6aR-cis)-Isomer, 3H-Labeled,Aflatoxin B1, cis(+,-)-Isomer,HSDB-3453,NSC-529592,HSDB 3453,HSDB3453,NSC 529592,NSC529592

Related Publications

I R Patel, and K K Rao
October 1980, Indian journal of experimental biology,
I R Patel, and K K Rao
November 1970, Applied microbiology,
I R Patel, and K K Rao
March 1979, Applied and environmental microbiology,
I R Patel, and K K Rao
December 1962, Journal of bacteriology,
I R Patel, and K K Rao
October 1970, Biochemical pharmacology,
I R Patel, and K K Rao
January 1986, Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer,
Copied contents to your clipboard!