On auxotrophy for pyrimidines of respiration-deficient chick embryo cells. 1984

M Grégoire, and R Morais, and M A Quilliam, and D Gravel

Chick embryo cells treated with chloramphenicol are inherently resistant to the growth-inhibitory effect of the drug when cultured in the presence of tryptose phosphate broth. The cells were found to be auxotrophic for pyrimidines and the presence in the broth of compounds of pyrimidine origin is demonstrated by chromatographic procedures and mass spectral analyses. They are in the form of ribonucleosides, ribonucleotides and pyrimidine-containing oligoribonucleotides. To understand the mechanism responsible for pyrimidine auxotrophy, the activity of enzymes involved in the pyrimidine biosynthetic pathway was determined. Measurement of the conversion of dihydroorotic acid to orotic acid in cell-free extracts revealed that chloramphenicol-treated chick embryo cells are deficient in dihydroorotate dehydrogenase activity. The data in vitro are supported by studies on the nutritional requirements of the respiration-deficient cells and by the incorporation in vivo of labelled dihydroorotic acid into the acid-insoluble fraction of the cells. Although the activity of the dehydrogenase in vitro is decreased by 95%, the enzyme is present in chloramphenicol-treated cells and its activity is unmasked by the artificial electron acceptor menadione. A study of the activity of other enzymes of the pyrimidine biosynthetic pathway demonstrated that their activity is comparable to that in control cells. The present results indicate that auxotrophy for pyrimidines results from the inhibition of the flow of electrons along the mitochondrial electron transport chain.

UI MeSH Term Description Entries
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009963 Orotic Acid An intermediate product in PYRIMIDINE synthesis which plays a role in chemical conversions between DIHYDROFOLATE and TETRAHYDROFOLATE. Potassium Orotate,Sodium Orotate,Zinc Orotate,Acid, Orotic,Orotate, Potassium,Orotate, Sodium,Orotate, Zinc
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004081 Dihydroorotate Oxidase An enzyme that in the course of pyrimidine biosynthesis, catalyzes the oxidation of dihydro-orotic acid to orotic acid utilizing oxygen as the electron acceptor. This enzyme is a flavoprotein which contains both FLAVIN-ADENINE DINUCLEOTIDE and FLAVIN MONONUCLEOTIDE as well as iron-sulfur centers. EC 1.3.3.1. Dihydro-Orotate Oxidase,Dihydro Orotate Oxidase,Oxidase, Dihydro-Orotate,Oxidase, Dihydroorotate
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron

Related Publications

M Grégoire, and R Morais, and M A Quilliam, and D Gravel
May 1980, Biochemical and biophysical research communications,
M Grégoire, and R Morais, and M A Quilliam, and D Gravel
May 1973, Kokyu to junkan. Respiration & circulation,
M Grégoire, and R Morais, and M A Quilliam, and D Gravel
December 1960, Journal of the National Cancer Institute,
M Grégoire, and R Morais, and M A Quilliam, and D Gravel
September 1966, Die Naturwissenschaften,
M Grégoire, and R Morais, and M A Quilliam, and D Gravel
November 1954, The Journal of nutrition,
M Grégoire, and R Morais, and M A Quilliam, and D Gravel
May 1985, Cancer research,
M Grégoire, and R Morais, and M A Quilliam, and D Gravel
January 1973, Physiologia Bohemoslovaca,
M Grégoire, and R Morais, and M A Quilliam, and D Gravel
October 1961, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
M Grégoire, and R Morais, and M A Quilliam, and D Gravel
January 2009, Morfologiia (Saint Petersburg, Russia),
M Grégoire, and R Morais, and M A Quilliam, and D Gravel
January 2021, PloS one,
Copied contents to your clipboard!