Adenosine inhibits cell division and promotes neurite extension in PC12 cells. 1984

T Huffaker, and T Corcoran, and J A Wagner

Low concentrations (10-50 microM) of adenosine (EC50 = 17 microM) or chloroadenosine (EC50 = 23 microM) prevent the division of PC12 cells. This inhibition is not mimicked by guanosine, inosine, 3',5' dideoxyadenosine, phenylisopropyladenosine, or adenylylimidodiphosphate. The growth inhibition is not relieved by addition of uridine or deoxycytidine, nor is it potentiated by homocysteine thiolactone. Inhibition of adenosine uptake does not inhibit adenosine-dependent growth arrest. PC12 variants that are deficient in adenosine kinase are as sensitive as wild-type cells to the growth-inhibitory effects of adenosine. These experiments suggest that adenosine prevents cell division at an adenosine receptor rather than acting after being metabolically altered. The adenosine receptor that inhibits cell division does not appear to be the adenosine receptor that stimulates adenylate cyclase for these reasons: (1) phenylisopropyladenosine, which is a potent agonist of this receptor, does not inhibit cell division; (2) 3',5' dideoxyadenosine does not antagonize the effect of adenosine on cell division; and (3) theophylline does not affect growth inhibition by adenosine. Thus, these experiments suggest the existence of a second adenosine receptor that can inhibit cell division. Adenosine also promotes the morphological differentiation of PC12 cells. In the presence of the adenosine deaminase inhibitor, erythro-9-(2-hydroxy-3-nonyl)adenosine (EHNA), adenosine causes the formation of short neurites (one-half to one and one-half cell diameters in length). Adenosine also increases the rate of neurite formation of both long and short neurites in response to NGF.

UI MeSH Term Description Entries
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011983 Receptors, Purinergic Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP. Methyladenine Receptors,Purine Receptors,Purinergic Receptor,Purinergic Receptors,Purinoceptors,Purine Receptor,Purinoceptor,Receptors, Methyladenine,Receptors, Purine,Receptor, Purine,Receptor, Purinergic
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

T Huffaker, and T Corcoran, and J A Wagner
October 2004, Experimental cell research,
T Huffaker, and T Corcoran, and J A Wagner
January 2013, Developmental neuroscience,
T Huffaker, and T Corcoran, and J A Wagner
December 1996, Neuroscience letters,
T Huffaker, and T Corcoran, and J A Wagner
February 2006, Medical science monitor : international medical journal of experimental and clinical research,
T Huffaker, and T Corcoran, and J A Wagner
October 2014, Neuroscience letters,
T Huffaker, and T Corcoran, and J A Wagner
June 1984, Brain research,
T Huffaker, and T Corcoran, and J A Wagner
March 2000, Journal of neurochemistry,
T Huffaker, and T Corcoran, and J A Wagner
November 2000, Brain research. Molecular brain research,
T Huffaker, and T Corcoran, and J A Wagner
August 2000, Neuroscience research,
Copied contents to your clipboard!