Regulation of the basolateral potassium conductance of the Necturus proximal tubule. 1984

Y Matsumura, and B Cohen, and W B Guggino, and G Giebisch

Two methods, the measurement of the response of the basolateral membrane potential (Vbl) of proximal tubule cells of Necturus to step changes in basolateral K+ concentration, and cellular cable analysis, were used to assess the changes in basolateral potassium conductance (GK) caused by a variety of maneuvers. The effects of some of these maneuvers on intracellular K+ activity (aiK) were also evaluated using double-barreled ion-selective electrodes. Perfusion with 0 mM K+ basolateral solution for 15 min followed by 45 min of 1 mM K+ solution resulted in a fall in basolateral potassium (apparent) transference number (tK), Vbl and aiK. Results of cable analysis showed that total basolateral resistance, Rb, rose. The electrophysiological effects of additional manipulations, known to inhibit net sodium reabsorption across the proximal tubular epithelium of Necturus, were also investigated. Ouabain caused a fall in tK accompanied by large decreases in aiK and Vbl. Lowering luminal sodium caused a fall in tK and a small reduction in Vbl. Selective reduction of peritubular sodium, a maneuver that has been shown to block sodium transport from lumen to peritubular fluid, also resulted in a significant decrease in tK. These results suggest that GK varies directly with rate of transport of the sodium pump, irrespective of the mechanism of change in pump turnover.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009337 Necturus A genus of the Proteidae family with five recognized species, which inhabit the Atlantic and Gulf drainages. Mudpuppy,Mudpuppies
D009338 Necturus maculosus A neotenic aquatic species of mudpuppy (Necturus) occurring from Manitoba to Louisiana and Texas.
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D005260 Female Females
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump

Related Publications

Y Matsumura, and B Cohen, and W B Guggino, and G Giebisch
January 1990, Progress in clinical and biological research,
Y Matsumura, and B Cohen, and W B Guggino, and G Giebisch
September 1987, The American journal of physiology,
Y Matsumura, and B Cohen, and W B Guggino, and G Giebisch
July 1998, The Journal of physiology,
Y Matsumura, and B Cohen, and W B Guggino, and G Giebisch
November 1996, The American journal of physiology,
Y Matsumura, and B Cohen, and W B Guggino, and G Giebisch
January 1991, Contributions to nephrology,
Y Matsumura, and B Cohen, and W B Guggino, and G Giebisch
September 1987, The American journal of physiology,
Y Matsumura, and B Cohen, and W B Guggino, and G Giebisch
January 1983, The Journal of membrane biology,
Y Matsumura, and B Cohen, and W B Guggino, and G Giebisch
August 1987, The American journal of physiology,
Y Matsumura, and B Cohen, and W B Guggino, and G Giebisch
January 1987, The Journal of membrane biology,
Y Matsumura, and B Cohen, and W B Guggino, and G Giebisch
April 1964, The Journal of clinical investigation,
Copied contents to your clipboard!