Molecular cloning of human terminal deoxynucleotidyltransferase. 1984

R C Peterson, and L C Cheung, and R J Mattaliano, and L M Chang, and F J Bollum

A cDNA of the human terminal deoxynucleotidyltransferase (TdT; "terminal transferase," EC 2.7.7.31) was isolated from a human lymphoblastoid cell cDNA library in lambda gt 11 by using immunological procedures. Four inserts containing 723 to 939 base pairs were recloned in pBR322 for hybridization and preliminary sequence studies. mRNA selected by hybridization to recombinant DNA was translated to a 58-kDa peptide that specifically immunoprecipitated with rabbit antibodies to calf terminal transferase and mouse monoclonal antibody to human terminal transferase. Blot hybridization of total poly(A)+ RNA from KM3 (TdT+) cells with nick-translated pBR322 recombinant DNA detected a message of about 2000 nucleotides, sufficient to code for the 580 amino acids in the protein. mRNA from terminal transferase- cells gave no signal in hybrid selection or RNA blot hybridization. The complete sequence of the 939-base-pair insert sequence was obtained from deletions cloned in pUC8. The DNA sequence contains an open reading frame coding for 238 amino acids, about 40% of the protein. Three peptides isolated by HPLC from tryptic digests of succinylated 58-kDa calf thymus terminal transferase were sequenced, providing 20, 18, and 22 residues of peptide sequence. A search of the translated sequence of the 939-base-pair insert shows three regions beginning after arginine that have greater than 90% homology with the sequence determined from the calf thymus terminal transferase peptides. These results provide unambiguous evidence that the human terminal transferase sequence has been cloned.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004253 DNA Nucleotidylexotransferase A non-template-directed DNA polymerase normally found in vertebrate thymus and bone marrow. It catalyzes the elongation of oligo- or polydeoxynucleotide chains and is widely used as a tool in the differential diagnosis of acute leukemias in man. EC 2.7.7.31. Terminal Addition Enzyme,Terminal Deoxyribonucleotidyltransferase,Deoxynucleotidyl Transferase,Deoxynucleotidyltransferase,Desoxynucleotidyl Transferase,Desoxynucleotidyltransferase,Tdt Antigen,Terminal Deoxynucleotidyl Transferase,Terminal Deoxyribonucleotidyl Transferase,Addition Enzyme, Terminal,Antigen, Tdt,Deoxynucleotidyl Transferase, Terminal,Deoxyribonucleotidyl Transferase, Terminal,Deoxyribonucleotidyltransferase, Terminal,Enzyme, Terminal Addition,Nucleotidylexotransferase, DNA,Transferase, Deoxynucleotidyl,Transferase, Desoxynucleotidyl,Transferase, Terminal Deoxynucleotidyl,Transferase, Terminal Deoxyribonucleotidyl
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

R C Peterson, and L C Cheung, and R J Mattaliano, and L M Chang, and F J Bollum
April 1983, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
R C Peterson, and L C Cheung, and R J Mattaliano, and L M Chang, and F J Bollum
May 1980, The Journal of biological chemistry,
R C Peterson, and L C Cheung, and R J Mattaliano, and L M Chang, and F J Bollum
January 1980, The Journal of biological chemistry,
R C Peterson, and L C Cheung, and R J Mattaliano, and L M Chang, and F J Bollum
January 1987, Preparative biochemistry,
R C Peterson, and L C Cheung, and R J Mattaliano, and L M Chang, and F J Bollum
June 1974, Nature,
R C Peterson, and L C Cheung, and R J Mattaliano, and L M Chang, and F J Bollum
September 2004, Journal of immunology (Baltimore, Md. : 1950),
R C Peterson, and L C Cheung, and R J Mattaliano, and L M Chang, and F J Bollum
January 1987, Gene,
R C Peterson, and L C Cheung, and R J Mattaliano, and L M Chang, and F J Bollum
July 1988, Biochemical and biophysical research communications,
R C Peterson, and L C Cheung, and R J Mattaliano, and L M Chang, and F J Bollum
March 1988, The Journal of biological chemistry,
R C Peterson, and L C Cheung, and R J Mattaliano, and L M Chang, and F J Bollum
January 1989, The Journal of biological chemistry,
Copied contents to your clipboard!