Glycosphingolipids and plasma lipoproteins: a review. 1984

S Chatterjee, and P O Kwiterovich

Glycosphingolipids (GSL) are complex, sugar-containing lipids that are transported in plasma on lipoproteins, particularly low density (beta) lipoproteins (LDL). LDL are taken up and metabolized by cells through a LDL receptor-mediated pathway. Cells from receptor-negative familial hypercholesterolemic (FH) homozygotes lack a functional LDL receptor and the cellular uptake of LDL occurs through a LDL receptor-independent pathway. We have studied the relation between LDL and GSL metabolism using an in vitro model of cultured human fibroblasts and an in vivo model of renal tubular cells shed in the urine. Using biochemical, morphological, and immunocytological techniques, we have demonstrated that LDL taken up through the LDL receptor-independent pathway results in the accumulation of GSL in cells in vitro and in vivo. The storage of GSL is localized to intracytoplasmic vesicles and such storage can be modulated by changing the concentration of LDL in the culture medium or in plasma. The possible effect of LDL on certain steps in the intracellular metabolism of GSL in normal and receptor-negative-homozygous FH cells is reviewed.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D006028 Glycosphingolipids Lipids containing at least one monosaccharide residue and either a sphingoid or a ceramide (CERAMIDES). They are subdivided into NEUTRAL GLYCOSPHINGOLIPIDS comprising monoglycosyl- and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides; and ACIDIC GLYCOSPHINGOLIPIDS which comprises sialosylglycosylsphingolipids (GANGLIOSIDES); SULFOGLYCOSPHINGOLIPIDS (formerly known as sulfatides), glycuronoglycosphingolipids, and phospho- and phosphonoglycosphingolipids. (From IUPAC's webpage) Asialoganglioside,Asialogangliosides,Glycosphingolipid,Sphingoglycolipid,Sphingoglycolipids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006938 Hyperlipoproteinemia Type II A group of familial disorders characterized by elevated circulating cholesterol contained in either LOW-DENSITY LIPOPROTEINS alone or also in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). Hyperbetalipoproteinemia,Hypercholesterolemia, Essential,Hypercholesterolemia, Familial,Apolipoprotein B-100, Familial Defective,Apolipoprotein B-100, Familial Ligand-Defective,Familial Combined Hyperlipoproteinemia,Hyper-Low Density Lipoproteinemia,Hyper-Low-Density-Lipoproteinemia,Hyper-beta-Lipoproteinemia,Hypercholesterolemia, Autosomal Dominant,Hypercholesterolemia, Autosomal Dominant, Type B,Hypercholesterolemic Xanthomatosis, Familial,Hyperlipoproteinemia Type 2,Hyperlipoproteinemia Type IIa,Hyperlipoproteinemia Type IIb,Hyperlipoproteinemia, Type II,Hyperlipoproteinemia, Type IIa,LDL Receptor Disorder,Apolipoprotein B 100, Familial Defective,Apolipoprotein B 100, Familial Ligand Defective,Autosomal Dominant Hypercholesterolemia,Autosomal Dominant Hypercholesterolemias,Combined Hyperlipoproteinemia, Familial,Combined Hyperlipoproteinemias, Familial,Density Lipoproteinemia, Hyper-Low,Density Lipoproteinemias, Hyper-Low,Disorder, LDL Receptor,Disorders, LDL Receptor,Dominant Hypercholesterolemia, Autosomal,Dominant Hypercholesterolemias, Autosomal,Essential Hypercholesterolemia,Essential Hypercholesterolemias,Familial Combined Hyperlipoproteinemias,Familial Hypercholesterolemia,Familial Hypercholesterolemias,Familial Hypercholesterolemic Xanthomatoses,Familial Hypercholesterolemic Xanthomatosis,Hyper Low Density Lipoproteinemia,Hyper beta Lipoproteinemia,Hyper-Low Density Lipoproteinemias,Hyper-Low-Density-Lipoproteinemias,Hyper-beta-Lipoproteinemias,Hyperbetalipoproteinemias,Hypercholesterolemias, Autosomal Dominant,Hypercholesterolemias, Essential,Hypercholesterolemias, Familial,Hypercholesterolemic Xanthomatoses, Familial,Hyperlipoproteinemia Type 2s,Hyperlipoproteinemia Type IIas,Hyperlipoproteinemia Type IIbs,Hyperlipoproteinemia Type IIs,Hyperlipoproteinemia, Familial Combined,Hyperlipoproteinemias, Familial Combined,Hyperlipoproteinemias, Type II,Hyperlipoproteinemias, Type IIa,LDL Receptor Disorders,Lipoproteinemia, Hyper-Low Density,Lipoproteinemias, Hyper-Low Density,Receptor Disorder, LDL,Receptor Disorders, LDL,Type 2, Hyperlipoproteinemia,Type II Hyperlipoproteinemia,Type II Hyperlipoproteinemias,Type IIa Hyperlipoproteinemia,Type IIa Hyperlipoproteinemias,Xanthomatoses, Familial Hypercholesterolemic,Xanthomatosis, Familial Hypercholesterolemic

Related Publications

S Chatterjee, and P O Kwiterovich
June 1981, Canadian journal of biochemistry,
S Chatterjee, and P O Kwiterovich
August 1982, International journal of sports medicine,
S Chatterjee, and P O Kwiterovich
May 1976, Biochimica et biophysica acta,
S Chatterjee, and P O Kwiterovich
May 1985, Archives of biochemistry and biophysics,
S Chatterjee, and P O Kwiterovich
January 1975, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
S Chatterjee, and P O Kwiterovich
July 1975, Klinische Wochenschrift,
S Chatterjee, and P O Kwiterovich
January 1972, Annals of clinical laboratory science,
S Chatterjee, and P O Kwiterovich
January 1981, Voprosy meditsinskoi khimii,
S Chatterjee, and P O Kwiterovich
February 1994, Medicina clinica,
S Chatterjee, and P O Kwiterovich
October 1982, The Journal of biological chemistry,
Copied contents to your clipboard!