The molecular basis of I-R hybrid dysgenesis in Drosophila melanogaster: identification, cloning, and properties of the I factor. 1984

A Bucheton, and R Paro, and H M Sang, and A Pelisson, and D J Finnegan

We have analyzed two mutations of the white-eye gene, which arose in flies subject to I-R hybrid dysgenesis. These mutations are associated with insertions of apparently identical 5.4 kb sequences, which we have cloned. We believe that these insertions are copies of the I factor controlling I-R hybrid dysgenesis. The I factor is not a member of the copia-like or fold-back classes of transposable elements and has no sequence homology with the P factor that controls P-M dysgenesis. All strains of D. melanogaster contain I-factor sequences. Those present in reactive strains must represent inactive I elements. I elements have a remarkably similar sequence organization in all reactive strains and are located in peri-centromeric regions. Inducer strains appear to contain both I elements, located in peri-centromeric regions, and 10-15 copies of the complete I factor at sites on the chromosome arms.

UI MeSH Term Description Entries
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA

Related Publications

A Bucheton, and R Paro, and H M Sang, and A Pelisson, and D J Finnegan
January 1989, Progress in nucleic acid research and molecular biology,
A Bucheton, and R Paro, and H M Sang, and A Pelisson, and D J Finnegan
December 1984, The EMBO journal,
A Bucheton, and R Paro, and H M Sang, and A Pelisson, and D J Finnegan
January 1981, Molecular & general genetics : MGG,
A Bucheton, and R Paro, and H M Sang, and A Pelisson, and D J Finnegan
October 1988, Nucleic acids research,
A Bucheton, and R Paro, and H M Sang, and A Pelisson, and D J Finnegan
June 1990, Mutation research,
A Bucheton, and R Paro, and H M Sang, and A Pelisson, and D J Finnegan
January 1990, Trends in genetics : TIG,
A Bucheton, and R Paro, and H M Sang, and A Pelisson, and D J Finnegan
February 1980, Science (New York, N.Y.),
A Bucheton, and R Paro, and H M Sang, and A Pelisson, and D J Finnegan
May 1993, Indian journal of experimental biology,
A Bucheton, and R Paro, and H M Sang, and A Pelisson, and D J Finnegan
March 1983, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!