In vitro inhibition of murine macrophage migration by Bordetella pertussis lymphocytosis-promoting factor. 1984

B D Meade, and P D Kind, and J B Ewell, and P P McGrath, and C R Manclark

Lymphocytosis promoting factor (LPF) of Bordetella pertussis is a protein toxin which may have a role in the pathogenesis of pertussis. Since macrophages have an important role in the control of respiratory infections, the in vitro effects of LPF on macrophages from C3H/HeN and C3H/HeJ mice and on a murine macrophage-like cell line, RAW264, were examined. LPF inhibited random migration of resident peritoneal macrophages as well as the chemotaxis of peritoneal macrophages and the cell line. Fifty percent inhibition of chemotaxis occurred at 0.2 to 0.3 ng of LPF per ml for the macrophages and at 1 to 2 ng of LPF per ml for the cell line. When LPF was either heated at 80 degrees C for 5 min or premixed with specific antibodies, it failed to inhibit migration. At 20 ng/ml, LPF inhibited chemotaxis by more than 80% and also decreased Fc-mediated phagocytosis by 25 to 35%. At this dose, LPF was not a chemoattractant for murine macrophages and did not reduce macrophage viability, adherence, or opsonized zymosan-stimulated superoxide release. When LPF-treated macrophages were added to tissue culture dishes and then examined microscopically after 4 h, the LPF-treated cells adhered but failed to spread and elongate as well as control macrophages. These data indicate that LPF specifically inhibits macrophage migration in vitro and suggest that a possible role for LPF in pathogenesis is to inhibit migration of macrophages to the site of B. pertussis infection.

UI MeSH Term Description Entries
D008263 Macrophage Migration-Inhibitory Factors Proteins released by sensitized LYMPHOCYTES and possibly other cells that inhibit the migration of MACROPHAGES away from the release site. The structure and chemical properties may vary with the species and type of releasing cell. Macrophage Migration Inhibitory Factor,Migration Inhibition Factors, Macrophage,Macrophage Migration Inhibition Factors,Migration Inhibition Factor, Macrophage,Macrophage Migration Inhibitory Factors,Migration-Inhibitory Factors, Macrophage
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D001886 Bordetella pertussis A species of gram-negative, aerobic bacteria that is the causative agent of WHOOPING COUGH. Its cells are minute coccobacilli that are surrounded by a slime sheath. Bacterium tussis-convulsivae,Haemophilus pertussis,Hemophilus pertussis
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002634 Chemotaxis, Leukocyte The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction. Leukotaxis,Leukocyte Chemotaxis
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B D Meade, and P D Kind, and J B Ewell, and P P McGrath, and C R Manclark
January 1977, The Journal of experimental medicine,
B D Meade, and P D Kind, and J B Ewell, and P P McGrath, and C R Manclark
October 1968, Japanese journal of medical science & biology,
B D Meade, and P D Kind, and J B Ewell, and P P McGrath, and C R Manclark
January 1977, The Journal of experimental medicine,
B D Meade, and P D Kind, and J B Ewell, and P P McGrath, and C R Manclark
September 1979, Biochimica et biophysica acta,
B D Meade, and P D Kind, and J B Ewell, and P P McGrath, and C R Manclark
August 1977, The Journal of infectious diseases,
B D Meade, and P D Kind, and J B Ewell, and P P McGrath, and C R Manclark
June 1979, The Journal of experimental medicine,
B D Meade, and P D Kind, and J B Ewell, and P P McGrath, and C R Manclark
May 1979, The Journal of experimental medicine,
B D Meade, and P D Kind, and J B Ewell, and P P McGrath, and C R Manclark
January 1980, Journal of immunology (Baltimore, Md. : 1950),
B D Meade, and P D Kind, and J B Ewell, and P P McGrath, and C R Manclark
June 1976, The Journal of experimental medicine,
B D Meade, and P D Kind, and J B Ewell, and P P McGrath, and C R Manclark
June 1982, Infection and immunity,
Copied contents to your clipboard!