Interaction of barbiturates with adenosine receptors in rat brain. 1984

M J Lohse, and V Lenschow, and U Schwabe

The effects of barbiturates on radioligand binding to inhibitory Ri adenosine receptors of rat brain membranes were investigated. Binding of the adenosine receptor agonist (-)N6-phenylisopropyl[3H]adenosine and the antagonist 1,3-diethyl-8-[3H]phenylxanthine was inhibited by several barbiturates. This inhibition was concentration-dependent and occurred in the range of pharmacologically effective concentrations. Pentobarbital was the most potent of the barbiturates tested with a Ki of 92 mumol/l. The (+)isomers of hexobarbital and mephobarbital were more potent than the respective (-)isomers. Barbituric acid itself did not displace either radioligand in concentrations up to 1 mmol/l. The inhibitory effect of pentobarbital was reversed by a single wash of membranes preincubated with the barbiturate. The presence of pentobarbital caused a decrease of the affinity of the receptor for the antagonist radioligand but did not alter the number of binding sites, suggesting a competitive antagonism. The effects of pentobarbital on radioligand binding to the receptor were not changed by the presence of picrotoxinin nor by the absence of chloride ions. This indicates that they are not mediated via the picrotoxinin binding site. The barbiturates could not be classified as either agonists or antagonists at the Ri adenosine receptor. The presence of GTP did not influence the inhibition of radioligand binding by pentobarbital; this is also observed for antagonists, whereas the affinity of agonists is markedly reduced by GTP. Binding of antagonists to the receptor is enthalpy-driven; the interaction of pentobarbital with the receptor was entropy-driven and the same was true for agonists.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D010660 Phenylisopropyladenosine N-Isopropyl-N-phenyl-adenosine. Antilipemic agent. Synonym: TH 162. Isopropylphenyladenosine,L-Phenylisopropyladenosine,N(6)-Phenylisopropyl-Adenosine,L Phenylisopropyladenosine
D010852 Picrotoxin A mixture of PICROTOXININ and PICROTIN that is a noncompetitive antagonist at GABA-A receptors acting as a convulsant. Picrotoxin blocks the GAMMA-AMINOBUTYRIC ACID-activated chloride ionophore. Although it is most often used as a research tool, it has been used as a CNS stimulant and an antidote in poisoning by CNS depressants, especially the barbiturates. 3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-9-(1-hydroxy-1-methylethyl)-8b-methyl-, (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8aS*,8bbeta,9S*))-, compd. with (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8,Cocculin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011983 Receptors, Purinergic Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP. Methyladenine Receptors,Purine Receptors,Purinergic Receptor,Purinergic Receptors,Purinoceptors,Purine Receptor,Purinoceptor,Receptors, Methyladenine,Receptors, Purine,Receptor, Purine,Receptor, Purinergic
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine

Related Publications

M J Lohse, and V Lenschow, and U Schwabe
October 1980, Biochemical pharmacology,
M J Lohse, and V Lenschow, and U Schwabe
January 1988, The Journal of pharmacology and experimental therapeutics,
M J Lohse, and V Lenschow, and U Schwabe
December 1985, Journal of neurochemistry,
M J Lohse, and V Lenschow, and U Schwabe
February 1982, Brain research,
M J Lohse, and V Lenschow, and U Schwabe
August 1990, Biochemical pharmacology,
M J Lohse, and V Lenschow, and U Schwabe
March 1988, Japanese journal of pharmacology,
M J Lohse, and V Lenschow, and U Schwabe
January 1986, Peptides,
M J Lohse, and V Lenschow, and U Schwabe
February 1975, Pharmacological research communications,
M J Lohse, and V Lenschow, and U Schwabe
November 2002, Naunyn-Schmiedeberg's archives of pharmacology,
M J Lohse, and V Lenschow, and U Schwabe
March 2001, The Biochemical journal,
Copied contents to your clipboard!