Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. I. Basic observations. 1984

B C Burckhardt, and K Sato, and E Frömter

The membrane potential response of proximal tubular cells to changing HCO3- concentrations was measured in micro-puncture experiments on rat kidney in vivo. No significant effect was noticed when luminal bicarbonate concentration was changed. Changing peritubular HCO3- by substitution with Cl- resulted in conspicuous membrane potential transients, which reached peak values after 100-200 ms and decayed towards near control with time constants of approximately 2 s. The polarity of the potential changes and the dependence of the initial potential deflections on the logarithm of HCO3- concentration suggest a high conductance of the peritubular cell membrane for HCO3- buffer, but not for Cl-, SO4(2-) or isethionate. At constant pH, tHCO3- was estimated to amount to approximately 0.68. At constant pCO2, tHCO3- was even greater because of an additional effect of OH- or respectively H+ gradients across the cell membrane. The secondary repolarization may be explained by passive net movements of K+ and HCO3- across the peritubular cell membrane, which result in a readjustment of intracellular HCO3- to the altered peritubular HCO3- concentration. Application of carbonic anhydrase inhibitors in the tubular lumen reduced the initial potential response by one half and doubled the repolarization time constant. The same effect occurred instantaneously when the inhibitor was applied - together with the HCO3- concentration step - in the peritubular perfusate. This observation demonstrates that membrane bound carbonic anhydrase is somehow involved in passive rheogenic bicarbonate transfer across the peritubular cell membrane, and suggests that HCO3- permeation might occur in form of CO2 and OH- (or H+ in opposite direction).

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002257 Carbonic Anhydrase Inhibitors A class of compounds that reduces the secretion of H+ ions by the proximal kidney tubule through inhibition of CARBONIC ANHYDRASES. Carbonate Dehydratase Inhibitor,Carbonate Dehydratase Inhibitors,Carbonic Anhydrase Inhibitor,Carboxyanhydrase Inhibitor,Carboxyanhydrase Inhibitors,Anhydrase Inhibitor, Carbonic,Dehydratase Inhibitor, Carbonate,Inhibitor, Carbonate Dehydratase,Inhibitor, Carbonic Anhydrase,Inhibitor, Carboxyanhydrase,Inhibitors, Carbonate Dehydratase,Inhibitors, Carbonic Anhydrase,Inhibitors, Carboxyanhydrase
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

B C Burckhardt, and K Sato, and E Frömter
December 1985, Pflugers Archiv : European journal of physiology,
B C Burckhardt, and K Sato, and E Frömter
June 1987, Pflugers Archiv : European journal of physiology,
B C Burckhardt, and K Sato, and E Frömter
September 1979, Pflugers Archiv : European journal of physiology,
B C Burckhardt, and K Sato, and E Frömter
May 1982, The American journal of physiology,
B C Burckhardt, and K Sato, and E Frömter
November 1987, Pflugers Archiv : European journal of physiology,
B C Burckhardt, and K Sato, and E Frömter
January 1987, The American journal of physiology,
B C Burckhardt, and K Sato, and E Frömter
June 1984, The American journal of physiology,
B C Burckhardt, and K Sato, and E Frömter
January 1983, The Journal of membrane biology,
Copied contents to your clipboard!