Expression of a biologically active fragment of human IgE epsilon chain in Escherichia coli. 1984

F T Liu, and K A Albrandt, and C G Bry, and T Ishizaka

cDNA corresponding to human IgE heavy (epsilon) chain mRNA was cloned from human IgE-secreting myeloma U266 cells. Partial nucleotide sequence analysis demonstrated that the cloned cDNA contained the coding region for about two-thirds of the CH2 and all of the CH3 and CH4 domains as well as the 3'-untranslated region. This epsilon cDNA was inserted into expression vector pUC7 and expression of an epsilon-chain fragment in Escherichia coli was demonstrated by protein blot analysis using 125I-labeled goat anti-human IgE as probe. The expression product was purified on a column of goat anti-human IgE-conjugated Sepharose 4B and the polypeptide was found to retain binding activity to human basophils.

UI MeSH Term Description Entries
D007073 Immunoglobulin E An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE). IgE
D007139 Immunoglobulin epsilon-Chains The class of heavy chains found in IMMUNOGLOBULIN E. They have a molecular weight of approximately 72 kDa and they contain about 550 amino acid residues arranged in five domains and about three times more carbohydrate than the heavy chains of IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; and IMMUNOGLOBULIN G. Ig epsilon Chains,Immunoglobulins, epsilon-Chain,Immunoglobulin epsilon-Chain,epsilon-Chain Immunoglobulins,epsilon-Immunoglobulin Heavy Chain,epsilon-Immunoglobulin Heavy Chains,Chains, Ig epsilon,Heavy Chain, epsilon-Immunoglobulin,Heavy Chains, epsilon-Immunoglobulin,Immunoglobulin epsilon Chain,Immunoglobulin epsilon Chains,Immunoglobulins, epsilon Chain,epsilon Chain Immunoglobulins,epsilon Chains, Ig,epsilon Immunoglobulin Heavy Chain,epsilon Immunoglobulin Heavy Chains,epsilon-Chain, Immunoglobulin,epsilon-Chains, Immunoglobulin
D007141 Immunoglobulin Fc Fragments Crystallizable fragments composed of the carboxy-terminal halves of both IMMUNOGLOBULIN HEAVY CHAINS linked to each other by disulfide bonds. Fc fragments contain the carboxy-terminal parts of the heavy chain constant regions that are responsible for the effector functions of an immunoglobulin (COMPLEMENT fixation, binding to the cell membrane via FC RECEPTORS, and placental transport). This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fc Fragment,Fc Fragments,Fc Immunoglobulin,Fc Immunoglobulins,Ig Fc Fragments,Immunoglobulin Fc Fragment,Immunoglobulins, Fc,Immunoglobulins, Fc Fragment,Fc Fragment Immunoglobulins,Fc Fragment, Immunoglobulin,Fc Fragments, Ig,Fc Fragments, Immunoglobulin,Fragment Immunoglobulins, Fc,Fragment, Fc,Fragments, Ig Fc,Immunoglobulin, Fc
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D009101 Multiple Myeloma A malignancy of mature PLASMA CELLS engaging in monoclonal immunoglobulin production. It is characterized by hyperglobulinemia, excess Bence-Jones proteins (free monoclonal IMMUNOGLOBULIN LIGHT CHAINS) in the urine, skeletal destruction, bone pain, and fractures. Other features include ANEMIA; HYPERCALCEMIA; and RENAL INSUFFICIENCY. Myeloma, Plasma-Cell,Kahler Disease,Myeloma, Multiple,Myeloma-Multiple,Myelomatosis,Plasma Cell Myeloma,Cell Myeloma, Plasma,Cell Myelomas, Plasma,Disease, Kahler,Multiple Myelomas,Myeloma Multiple,Myeloma, Plasma Cell,Myeloma-Multiples,Myelomas, Multiple,Myelomas, Plasma Cell,Myelomas, Plasma-Cell,Myelomatoses,Plasma Cell Myelomas,Plasma-Cell Myeloma,Plasma-Cell Myelomas
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

F T Liu, and K A Albrandt, and C G Bry, and T Ishizaka
May 1984, Proceedings of the National Academy of Sciences of the United States of America,
F T Liu, and K A Albrandt, and C G Bry, and T Ishizaka
May 1988, Molecular microbiology,
F T Liu, and K A Albrandt, and C G Bry, and T Ishizaka
December 1990, The Journal of biological chemistry,
F T Liu, and K A Albrandt, and C G Bry, and T Ishizaka
January 1996, Archives of biochemistry and biophysics,
F T Liu, and K A Albrandt, and C G Bry, and T Ishizaka
March 2008, Clinical and experimental medicine,
F T Liu, and K A Albrandt, and C G Bry, and T Ishizaka
June 2005, Protein expression and purification,
F T Liu, and K A Albrandt, and C G Bry, and T Ishizaka
February 1993, Cellular and molecular neurobiology,
F T Liu, and K A Albrandt, and C G Bry, and T Ishizaka
March 2012, Protein expression and purification,
F T Liu, and K A Albrandt, and C G Bry, and T Ishizaka
May 1992, Biochemical and biophysical research communications,
F T Liu, and K A Albrandt, and C G Bry, and T Ishizaka
September 1985, European journal of immunology,
Copied contents to your clipboard!