Single-channel properties of the reconstituted voltage-regulated Na channel isolated from the electroplax of Electrophorus electricus. 1984

R L Rosenberg, and S A Tomiko, and W S Agnew

The tetrodotoxin-binding protein purified from electroplax of Electrophorus electricus has been reincorporated into multilamellar vesicles that were used for patch recording. When excised patches of these reconstituted membranes were voltage clamped in the absence of neurotoxins, voltage-dependent single-channel currents were recorded. These displayed properties qualitatively and quantitatively similar to those reported for Na channels from nerve and muscle cells, including uniform single-channel conductances of the appropriate magnitude (approximately equal to 11 pS in 95 mM Na+), mean open times of approximately equal to 1.9 msec, and 7-fold selectively for Na+ over K+. Currents averaged from many depolarizations showed initial voltage-dependent activation and subsequent inactivation. In the presence of batrachotoxin, channels were observed with markedly different properties, including conductances of 20-25 pS (95 mM Na+), mean open times of approximately equal to 28 msec, and no indication of inactivation. Collectively, these findings indicate that the tetrodotoxin-binding protein of electroplax is a voltage-regulated sodium channel.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D004593 Electrophorus A genus of fish, in the family GYMNOTIFORMES, capable of producing an electric shock that immobilizes fish and other prey. The species Electrophorus electricus is also known as the electric eel, though it is not a true eel. Eel, Electric,Electric Eel,Electrophorus electricus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

R L Rosenberg, and S A Tomiko, and W S Agnew
November 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R L Rosenberg, and S A Tomiko, and W S Agnew
January 1983, Cold Spring Harbor symposia on quantitative biology,
R L Rosenberg, and S A Tomiko, and W S Agnew
June 1978, Proceedings of the National Academy of Sciences of the United States of America,
R L Rosenberg, and S A Tomiko, and W S Agnew
January 1978, Comparative biochemistry and physiology. C: Comparative pharmacology,
R L Rosenberg, and S A Tomiko, and W S Agnew
September 1987, Proceedings of the National Academy of Sciences of the United States of America,
R L Rosenberg, and S A Tomiko, and W S Agnew
January 1986, Annals of the New York Academy of Sciences,
R L Rosenberg, and S A Tomiko, and W S Agnew
April 1981, Biochimica et biophysica acta,
R L Rosenberg, and S A Tomiko, and W S Agnew
February 1957, Journal of cellular and comparative physiology,
R L Rosenberg, and S A Tomiko, and W S Agnew
June 1977, Journal of neurochemistry,
Copied contents to your clipboard!