[3H]oxytocin binding sites in the rat brain demonstrated by quantitative light microscopic autoradiography. 1984

R E Brinton, and J K Wamsley, and K W Gee, and Y P Wan, and H I Yamamura

UI MeSH Term Description Entries
D008297 Male Males
D008853 Microscopy The use of instrumentation and techniques for visualizing material and details that cannot be seen by the unaided eye. It is usually done by enlarging images, transmitted by light or electron beams, with optical or magnetic lenses that magnify the entire image field. With scanning microscopy, images are generated by collecting output from the specimen in a point-by-point fashion, on a magnified scale, as it is scanned by a narrow beam of light or electrons, a laser, a conductive probe, or a topographical probe. Compound Microscopy,Hand-Held Microscopy,Light Microscopy,Optical Microscopy,Simple Microscopy,Hand Held Microscopy,Microscopy, Compound,Microscopy, Hand-Held,Microscopy, Light,Microscopy, Optical,Microscopy, Simple
D009481 Neurophysins Carrier proteins for OXYTOCIN and VASOPRESSIN. They are polypeptides of about 10-kDa, synthesized in the HYPOTHALAMUS. Neurophysin I is associated with oxytocin and neurophysin II is associated with vasopressin in their respective precursors and during transportation down the axons to the neurohypophysis (PITUITARY GLAND, POSTERIOR). Neurophysin,Neurophysin I,Neurophysin II,Neurophysin III,Oxytocin-Associated Neurophysin,Vasopressin-Associated Neurophysin,Neurophysin, Oxytocin-Associated,Neurophysin, Vasopressin-Associated,Oxytocin Associated Neurophysin,Vasopressin Associated Neurophysin
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R E Brinton, and J K Wamsley, and K W Gee, and Y P Wan, and H I Yamamura
May 1983, Life sciences,
R E Brinton, and J K Wamsley, and K W Gee, and Y P Wan, and H I Yamamura
February 1991, Brain research,
R E Brinton, and J K Wamsley, and K W Gee, and Y P Wan, and H I Yamamura
August 1982, European journal of pharmacology,
R E Brinton, and J K Wamsley, and K W Gee, and Y P Wan, and H I Yamamura
March 1985, Life sciences,
R E Brinton, and J K Wamsley, and K W Gee, and Y P Wan, and H I Yamamura
September 1984, Neuroscience letters,
R E Brinton, and J K Wamsley, and K W Gee, and Y P Wan, and H I Yamamura
March 1984, European journal of pharmacology,
R E Brinton, and J K Wamsley, and K W Gee, and Y P Wan, and H I Yamamura
November 1984, Brain research,
R E Brinton, and J K Wamsley, and K W Gee, and Y P Wan, and H I Yamamura
March 1983, Brain research,
R E Brinton, and J K Wamsley, and K W Gee, and Y P Wan, and H I Yamamura
July 1992, Journal of pharmacological and toxicological methods,
R E Brinton, and J K Wamsley, and K W Gee, and Y P Wan, and H I Yamamura
December 1985, Brain research,
Copied contents to your clipboard!