Molecular cloning of the hemolysin determinant from Vibrio cholerae El Tor. 1984

S L Goldberg, and J R Murphy

Vibrio cholerae El Tor RV79 is phenotypically nonhemolytic; however, strongly hemolytic convertants are occasionally observed on blood agar plates. We have cloned DNA sequences corresponding to the hemolysin determinant from RV79 (Hly+) in the lambda L47.1 and pBR322 vectors. A 2.3-kilobase fragment of V. cholerae DNA was found to be necessary for hemolytic activity. This cloned DNA sequence was used as a probe in Southern blot hybridization analysis of chromosomal restriction digests of a variety of El Tor and classical biotype V. cholerae strains. In all cases, DNA fragments with the same electrophoretic mobilities hybridized to the Hly probe. The results presented demonstrate that the cloned hemolysin determinant is the hly locus. By using mutator vibriophage VcA-3 insertion to promote high-frequency transfer, the hly locus was mapped between arg and ilv on the V. cholerae RV79 chromosome.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006460 Hemolysin Proteins Proteins from BACTERIA and FUNGI that are soluble enough to be secreted to target ERYTHROCYTES and insert into the membrane to form beta-barrel pores. Biosynthesis may be regulated by HEMOLYSIN FACTORS. Hemolysin,Hemolysins,Hemalysins,Proteins, Hemolysin

Related Publications

S L Goldberg, and J R Murphy
June 1966, The Journal of infectious diseases,
S L Goldberg, and J R Murphy
May 1987, Infection and immunity,
S L Goldberg, and J R Murphy
April 2000, Infection and immunity,
S L Goldberg, and J R Murphy
August 1996, Infection and immunity,
S L Goldberg, and J R Murphy
January 1999, Biochimica et biophysica acta,
S L Goldberg, and J R Murphy
March 1979, The Southeast Asian journal of tropical medicine and public health,
S L Goldberg, and J R Murphy
March 1993, The Medical journal of Malaysia,
Copied contents to your clipboard!