Host range encoded by the Agrobacterium tumefaciens tumor-inducing plasmid pTiAg63 can be expanded by modification of its T-DNA oncogene complement. 1984

W G Buchholz, and M F Thomashow

Agrobacterium tumefaciens harboring pTiA6 incite unorganized tumors on Nicotiana rustica, sunflowers, carrots, and tomatoes, whereas isogenic strains of agrobacteria harboring pTiAg63 form "rooty" tumors on N. rustica and are essentially avirulent on sunflowers, carrots, and tomatoes. In this report we show that the different host range characteristics of these two plasmids were due, in part, to differences in the T-DNA oncogene complements of the plasmids. Specifically, we constructed derivatives of pTiAg63 that contained pTiA6 oncogenes 4, 6a, and 6b inserted into the TB-DNA region and found that agrobacteria harboring these plasmids could incite unorganized tumors on N. rustica, tomatoes, carrots, and the inbred sunflower line HA202R. Undefined host factors, however, also appeared to be involved in determining A. tumefaciens host range since three inbred sunflower lines, HA303B, HA89B, and HA290B, were susceptible to tumor formation by agrobacteria harboring pTiA6 but not by strains harboring pTiAg63 or the modified pTiAg63 plasmids.

UI MeSH Term Description Entries
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D010941 Plant Tumors A localized proliferation of plant tissue forming a swelling or outgrowth, commonly with a characteristic shape and unlike any organ of the normal plant. Plant tumors or galls usually form in response to the action of a pathogen or a pest. (Holliday, P., A Dictionary of Plant Pathology, 1989, p330) Crown Gall,Galls, Plant,Plant Galls,Crown Galls,Gall, Crown,Gall, Plant,Galls, Crown,Plant Gall,Plant Tumor,Tumor, Plant,Tumors, Plant
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012231 Rhizobium A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

W G Buchholz, and M F Thomashow
May 1980, Proceedings of the National Academy of Sciences of the United States of America,
W G Buchholz, and M F Thomashow
August 1979, Journal of bacteriology,
W G Buchholz, and M F Thomashow
March 1983, Proceedings of the National Academy of Sciences of the United States of America,
W G Buchholz, and M F Thomashow
May 1998, Molecular plant-microbe interactions : MPMI,
W G Buchholz, and M F Thomashow
September 1986, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!