Polypeptide involved in the Escherichia coli plasmid-mediated citrate transport system. 1984

T Hirato, and M Shinagawa, and N Ishiguro, and G Sato

A genetic determinant conferring on Escherichia coli the ability to utilize citrate as a sole source of carbon and energy was subcloned into pBR322 from a naturally occurring, citrate utilization (Cit+) plasmid, pOH30221, and was localized to a 1.6-kilobase region by cloning and subsequent deletion analysis. Genetic expression of the Cit+ determinant in E. coli minicells revealed that the Cit+ determinant encoded a single, membrane-associated polypeptide with an apparent molecular weight of 35,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This polypeptide seemed not to be synthesized as a precursor with an amino-terminal signal sequence.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002951 Citrates Derivatives of CITRIC ACID.
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

T Hirato, and M Shinagawa, and N Ishiguro, and G Sato
September 1988, Gene,
T Hirato, and M Shinagawa, and N Ishiguro, and G Sato
November 1973, Biochimica et biophysica acta,
T Hirato, and M Shinagawa, and N Ishiguro, and G Sato
July 1981, European journal of biochemistry,
T Hirato, and M Shinagawa, and N Ishiguro, and G Sato
December 1985, Journal of bacteriology,
T Hirato, and M Shinagawa, and N Ishiguro, and G Sato
January 1983, Journal of pediatric gastroenterology and nutrition,
T Hirato, and M Shinagawa, and N Ishiguro, and G Sato
October 1982, Journal of bacteriology,
T Hirato, and M Shinagawa, and N Ishiguro, and G Sato
December 1983, Journal of bacteriology,
T Hirato, and M Shinagawa, and N Ishiguro, and G Sato
April 1985, Journal of general microbiology,
T Hirato, and M Shinagawa, and N Ishiguro, and G Sato
January 1969, Cold Spring Harbor symposia on quantitative biology,
T Hirato, and M Shinagawa, and N Ishiguro, and G Sato
January 1985, Journal of bacteriology,
Copied contents to your clipboard!