Flat revertants derived from Kirsten murine sarcoma virus-transformed cells produce transforming growth factors. 1984

D S Salomon, and J A Zwiebel, and M Noda, and R H Bassin

Two flat cellular revertant cell lines, F-2 and C-11, which were originally selected from the DT line of Kirsten murine sarcoma virus (Ki-MuSV)-transformed NIH/3T3 cells, were examined for the production of transforming growth factors (TGFs). The revertant cells fail to grow in semisolid medium as colonies and exhibit a markedly reduced level of tumorigenicity in nude mice, although they are known to express high levels of p21ras, the product of the Kirsten sarcoma virus oncogene, ras, and they contain a rescuable transforming virus. TGF activity associated with the transformed, revertant, and non-transformed cell lines was measured by the ability of concentrated conditioned medium (CM) from these cells to induce normal rat kidney (NRK) and NIH/3T3 cells to form colonies in semisolid agar suspension cultures and to inhibit the binding of 125I epidermal growth factor (EGF) to specific cell surface receptors. CM from the transformed DT cells and from both the F-2 and C-11 revertants contains TGF activity, in contrast to CM obtained from normal NIH/3T3 cells. Furthermore, unlike NIH/3T3 cells, neither the DT nor the revertant cells were able to bind 125I EGF. All four cell lines were able to proliferate in serum-free medium supplemented with transferrin, insulin, EGF, and Pedersen fetuin. However, in basal medium lacking these growth factors, only DT cells and, to a lesser extent, the revertant cells were able to grow. These results suggest that the F-2 and C-11 revertants fail to exhibit all of the properties associated with transformation because the series of events leading to the transformed phenotype is blocked at a point(s) distal both to the expression of the p21 ras gene product and also to the production of TGFs and that the production of TGFs may be necessary but not sufficient for maintaining the transformed state.

UI MeSH Term Description Entries
D007708 Kirsten murine sarcoma virus A replication-defective murine sarcoma virus (SARCOMA VIRUSES, MURINE) capable of transforming mouse lymphoid cells and producing erythroid leukemia after superinfection with murine leukemia viruses (LEUKEMIA VIRUS, MURINE). It has also been found to transform cultured human fibroblasts, rat liver epithelial cells, and rat adrenocortical cells. Kirsten Sarcoma Virus,Sarcoma Virus, Kirsten,Virus, Kirsten Sarcoma
D009053 Sarcoma Viruses, Murine A group of replication-defective viruses, in the genus GAMMARETROVIRUS, which are capable of transforming cells, but which replicate and produce tumors only in the presence of Murine leukemia viruses (LEUKEMIA VIRUS, MURINE). Finkel-Biskis-Jinkins murine sarcoma virus,Mouse Sarcoma Viruses,FBJ-MSV,FBR-MSV,Finkel-Biskis-Reilly murine sarcoma virus,Finkel Biskis Jinkins murine sarcoma virus,Finkel Biskis Reilly murine sarcoma virus,Murine Sarcoma Viruses,Sarcoma Viruses, Mouse
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D010452 Peptide Biosynthesis The production of PEPTIDES or PROTEINS by the constituents of a living organism. The biosynthesis of proteins on RIBOSOMES following an RNA template is termed translation (TRANSLATION, GENETIC). There are other, non-ribosomal peptide biosynthesis (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT) mechanisms carried out by PEPTIDE SYNTHASES and PEPTIDYLTRANSFERASES. Further modifications of peptide chains yield functional peptide and protein molecules. Biosynthesis, Peptide
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens

Related Publications

D S Salomon, and J A Zwiebel, and M Noda, and R H Bassin
October 1980, Journal of cellular physiology,
D S Salomon, and J A Zwiebel, and M Noda, and R H Bassin
September 1983, Proceedings of the National Academy of Sciences of the United States of America,
D S Salomon, and J A Zwiebel, and M Noda, and R H Bassin
August 1978, Proceedings of the National Academy of Sciences of the United States of America,
D S Salomon, and J A Zwiebel, and M Noda, and R H Bassin
August 1974, Journal of virology,
D S Salomon, and J A Zwiebel, and M Noda, and R H Bassin
October 1983, Journal of cellular physiology,
D S Salomon, and J A Zwiebel, and M Noda, and R H Bassin
November 1976, Science (New York, N.Y.),
D S Salomon, and J A Zwiebel, and M Noda, and R H Bassin
November 1980, The Journal of general virology,
Copied contents to your clipboard!