Role of corpus callosum in functional organization of cat striate cortex. 1984

B R Payne, and H E Pearson, and N Berman

The short-term (3-51 days) and long-term (31-42 wk) effects of corpus callosum transection on the receptive-field properties of neurons were assessed at the single-cell, architectural, and topographical levels of organization in the cat striate cortex. Corpus callosum transection decreased the proportion of neurons that could be activated from both eyes. In short-term animals, the reduction in binocularity was restricted to the representation of a vertical strip of visual space extending from the vertical meridian to at least 12 degrees lateral. In the long-term animals, the reduction in binocularity was restricted to the representation of visual space 4 degrees lateral to the vertical meridian. Therefore, the reduction in the representation of 4-12 degrees was only temporary. In both groups, the reduction in binocularity was less in the representation of area centralis than at other retinal locations in the same vertical strip. The region of area 17 affected permanently by the transection receives fibers from the contralateral hemisphere in normal animals. The region affected temporarily by the transection contains callosal cells but does not contain callosal terminals. Binocularity was assessed separately for simple I, simple II, and complex receptive-field types. The reduction in binocularity in the 12 degrees strip in short-term animals and in the 4 degrees strip in long-term animals was accounted for mainly by a reduction in binocularity of simple I and complex cells. As in normal animals, complex cells in callosum-transected cats were always more binocular than the other cell types. An analysis of the effects of corpus callosum transection on different cortical layers showed that a greater proportion of cells in the supragranular layers II and III showed a reduction in binocularity than in the infragranular layers V and VI. The proportion of binocular neurons in layer IV was not significantly different from normal. The major decreases in binocularity occurred in layers II, III, and VI for simple I and simple II cells and in layers II, III, and V for complex cells. The binocularity of simple II cells in layer IV and complex cells in layer VI was not affected. The effects of the transection on the columnar organization of the cortex were assessed by making electrode tracks that passed in the radial or laminar dimensions of the cortex. Reconstructions of the radial tracks showed that cells within one radial column tended to be dominated by the same eye. In adjacent columns, cells tended to be dominated by different eyes.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

B R Payne, and H E Pearson, and N Berman
October 2017, Neuroscience,
B R Payne, and H E Pearson, and N Berman
January 1981, Experimental brain research,
B R Payne, and H E Pearson, and N Berman
January 1981, Experimental brain research,
B R Payne, and H E Pearson, and N Berman
January 1981, Experimental brain research,
B R Payne, and H E Pearson, and N Berman
January 1992, The European journal of neuroscience,
B R Payne, and H E Pearson, and N Berman
January 1982, Experimental brain research,
B R Payne, and H E Pearson, and N Berman
January 1978, The Journal of comparative neurology,
B R Payne, and H E Pearson, and N Berman
October 1994, Behavioural brain research,
B R Payne, and H E Pearson, and N Berman
February 2003, AJNR. American journal of neuroradiology,
Copied contents to your clipboard!