The calcium current in inner segments of rods from the salamander (Ambystoma tigrinum) retina. 1984

D P Corey, and J M Dubinsky, and E A Schwartz

Solitary rod inner segments were isolated from salamander retinae. Their Ca current was studied with the 'whole-cell, gigaseal' technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). The soluble constituents of the cytoplasm exchanged with the solution in the pipette. The external solution could be changed during continuous perfusion. Membrane voltage was controlled with a voltage clamp. After permeant ions other than Ca were replaced with impermeant ions (i.e. tetraethylammonium as a cation, and aspartate or methanesulphonate as an anion), an inward current remained. It activated at approximately -40 mV, reached a maximum at approximately 0 mV, and decreased as the membrane was further depolarized. The size of the current increased when Ba was substituted for external Ca. The current was blocked when Ca was replaced with Co. The voltage at which the current was half-maximum shifted from approximately -22 to -31 mV during the initial 3 min of an experiment. The maximum amplitude of the current continuously declined during the entire course of an experiment. The time course for activation of the Ca current following a step of depolarization could be described by the sum of two exponentials. The time constant of the slower exponential was voltage dependent. Deactivation following repolarization could also be described by the sum of two exponentials. Both time constants for deactivation were independent of voltage (between -30 and 0 mV) and faster than the slower time constant for activation. When the internal Ca concentration was buffered by 10 mM-EGTA, the Ca current did not inactivate during several seconds of maintained depolarization. When the concentration of EGTA was reduced to 0.1 mM, the Ca current declined and the membrane conductance decreased during several seconds of maintained depolarization. This inactivation was incomplete and only occurred after a substantial quantity of Ca entered. Following repolarization the Ca conductance recovered from inactivation. In contrast, the continuous decline observed during the course of an experiment (item 3) was not reversible. The difference suggests that inactivation and the decline are distinct processes.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000557 Ambystoma A genus of the Ambystomatidae family. The best known species are the axolotl AMBYSTOMA MEXICANUM and the closely related tiger salamander Ambystoma tigrinum. They may retain gills and remain aquatic without developing all of the adult characteristics. However, under proper changes in the environment they metamorphose. Amblystoma,Ambystoma tigrinum,Tiger Salamander,Amblystomas,Ambystomas,Salamander, Tiger,Salamanders, Tiger,Tiger Salamanders
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

D P Corey, and J M Dubinsky, and E A Schwartz
August 2004, The Journal of comparative neurology,
D P Corey, and J M Dubinsky, and E A Schwartz
March 1984, The Journal of physiology,
D P Corey, and J M Dubinsky, and E A Schwartz
February 1986, The Journal of physiology,
D P Corey, and J M Dubinsky, and E A Schwartz
July 1977, Developmental psychobiology,
D P Corey, and J M Dubinsky, and E A Schwartz
June 1977, The Journal of comparative neurology,
D P Corey, and J M Dubinsky, and E A Schwartz
September 1984, The Journal of physiology,
D P Corey, and J M Dubinsky, and E A Schwartz
March 2003, The Journal of physiology,
D P Corey, and J M Dubinsky, and E A Schwartz
October 1999, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
D P Corey, and J M Dubinsky, and E A Schwartz
January 1972, Brain, behavior and evolution,
D P Corey, and J M Dubinsky, and E A Schwartz
October 1986, The Journal of comparative neurology,
Copied contents to your clipboard!