Plasmid transformation of Streptococcus lactis protoplasts: optimization and use in molecular cloning. 1984

J K Kondo, and L L McKay

The parameters affecting polyethylene glycol-induced plasmid transformation of Streptococcus lactis LM0230 protoplasts were examined to increase the transformation frequency. In contrast to spreading protoplasts over the surface of an agar medium, their incorporation into soft agar overlays enhanced regeneration of protoplasts and eliminated variability in transformation frequencies. Polyethylene glycol with a molecular weight of 3,350 at a final concentration of 22.5% yielded optimal transformation. A 20-min polyethylene glycol treatment of protoplasts in the presence of DNA was necessary for maximal transformation. The number of transformants recovered increased as the protoplast and DNA concentration increased over a range of 3.0 X 10(6) to 3.0 X 10(8) protoplasts and 0.25 to 4.0 micrograms of DNA per assay, respectively. With these parameters, transformation was increased to 5 X 10(3) to 4 X 10(4) transformants per microgram of DNA. Linear and recombinant plasmid DNA transformed, but at frequencies 10- to 100-fold lower than that of covalently closed circular DNA. Transformation of recombinant DNA molecules enabled the cloning of restriction endonuclease fragments coding for lactose metabolism into S. lactis LM0230 with the Streptococcus sanguis cloning vector, pGB301. These results demonstrated that the transformation frequency is sufficient to clone plasmid-coded genes which should prove useful for strain improvement of dairy starter cultures.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011523 Protoplasts The protoplasm and plasma membrane of plant, fungal, bacterial or archaeon cells without the CELL WALL. Protoplast
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013294 Lactococcus lactis A non-pathogenic species of LACTOCOCCUS found in DAIRY PRODUCTS and responsible for the souring of MILK and the production of LACTIC ACID. Streptococcus lactis,Lactococcus lactis subsp. lactis
D014169 Transformation, Bacterial The heritable modification of the properties of a competent bacterium by naked DNA from another source. The uptake of naked DNA is a naturally occuring phenomenon in some bacteria. It is often used as a GENE TRANSFER TECHNIQUE. Bacterial Transformation

Related Publications

J K Kondo, and L L McKay
August 1986, Applied and environmental microbiology,
J K Kondo, and L L McKay
October 1985, Applied and environmental microbiology,
J K Kondo, and L L McKay
February 1996, Letters in applied microbiology,
J K Kondo, and L L McKay
August 1984, Applied and environmental microbiology,
J K Kondo, and L L McKay
October 1987, Applied and environmental microbiology,
J K Kondo, and L L McKay
February 1987, Antibiotiki i meditsinskaia biotekhnologiia = Antibiotics and medical biotechnology,
J K Kondo, and L L McKay
June 1989, Applied and environmental microbiology,
J K Kondo, and L L McKay
February 1986, Applied and environmental microbiology,
J K Kondo, and L L McKay
October 1987, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
Copied contents to your clipboard!