[Interaction of tertiapin, a neurotoxin from bee venom, with calmodulin]. 1983

A I Miroshnikov, and V A Boĭkov, and L G Snezhkova, and S E Severin, and V I Shvets

Tertiapin, a neurotoxin from the honey bee venom, interacts specifically with calmodulin in the presence of Ca2+. The nature of this interaction was studied using calmodulin-cAMP phosphodiesterase system. Tertiapin does not affect the unstimulated basal activity of phosphodiesterase. However, it totally inhibits the enzyme-activating capacity of calmodulin. Analysis of the dose-dependent activation of phosphodiesterase by calmodulin in the presence of tertiapin indicated that inhibition is caused by the interaction of two tertiapin molecules with calmodulin (Kd 2 microM). The data obtained suggest that the toxic effect of tertiapin in nervous tissue is mediated by blockade of calmodulin function.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001514 Bee Venoms Toxins obtained from Apis mellifera (honey bee) and related species. They contain various enzymes, polypeptide toxins, and other substances, some of which are allergenic or immunogenic or both. These venoms were formerly used in rheumatism to stimulate the pituitary-adrenal system. Apis Venoms,Honeybee Venom,Honeybee Venoms,Apitoxin,Bee Venom,Venom, Bee,Venom, Honeybee,Venoms, Apis,Venoms, Bee,Venoms, Honeybee
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D015105 3',5'-Cyclic-AMP Phosphodiesterases Enzymes that catalyze the hydrolysis of CYCLIC AMP to form adenosine 5'-phosphate. The enzymes are widely distributed in animal tissue and control the level of intracellular cyclic AMP. Many specific enzymes classified under this heading demonstrate additional spcificity for 3',5'-cyclic IMP and CYCLIC GMP. 3',5'-Cyclic AMP 5'-Nucleotidohydrolase,3',5'-Cyclic-Nucleotide Phosphodiesterase,CAMP Phosphodiesterase,3',5' Cyclic AMP Phosphodiesterase,3',5'-Cyclic AMP Phosphodiesterase,3',5'-Cyclic Nucleotide Phosphodiesterase,3',5'-Cyclic-AMP Phosphodiesterase,3',5'-Nucleotide Phosphodiesterase,3,5-Cyclic AMP 5-Nucleotidohydrolase,3,5-Cyclic AMP Phosphodiesterase,3',5' Cyclic AMP 5' Nucleotidohydrolase,3',5' Cyclic AMP Phosphodiesterases,3',5' Cyclic Nucleotide Phosphodiesterase,3',5' Nucleotide Phosphodiesterase,3,5 Cyclic AMP 5 Nucleotidohydrolase,3,5 Cyclic AMP Phosphodiesterase,5'-Nucleotidohydrolase, 3',5'-Cyclic AMP,5-Nucleotidohydrolase, 3,5-Cyclic AMP,AMP 5'-Nucleotidohydrolase, 3',5'-Cyclic,AMP 5-Nucleotidohydrolase, 3,5-Cyclic,AMP Phosphodiesterase, 3',5'-Cyclic,AMP Phosphodiesterase, 3,5-Cyclic,Nucleotide Phosphodiesterase, 3',5'-Cyclic,Phosphodiesterase, 3',5'-Cyclic AMP,Phosphodiesterase, 3',5'-Cyclic Nucleotide,Phosphodiesterase, 3',5'-Cyclic-AMP,Phosphodiesterase, 3',5'-Cyclic-Nucleotide,Phosphodiesterase, 3',5'-Nucleotide,Phosphodiesterase, 3,5-Cyclic AMP,Phosphodiesterase, CAMP,Phosphodiesterases, 3',5'-Cyclic-AMP

Related Publications

A I Miroshnikov, and V A Boĭkov, and L G Snezhkova, and S E Severin, and V I Shvets
October 2000, British journal of pharmacology,
A I Miroshnikov, and V A Boĭkov, and L G Snezhkova, and S E Severin, and V I Shvets
May 1975, FEBS letters,
A I Miroshnikov, and V A Boĭkov, and L G Snezhkova, and S E Severin, and V I Shvets
August 1982, Life sciences,
A I Miroshnikov, and V A Boĭkov, and L G Snezhkova, and S E Severin, and V I Shvets
May 2020, Metabolites,
A I Miroshnikov, and V A Boĭkov, and L G Snezhkova, and S E Severin, and V I Shvets
June 1967, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
A I Miroshnikov, and V A Boĭkov, and L G Snezhkova, and S E Severin, and V I Shvets
June 1981, Molecular immunology,
A I Miroshnikov, and V A Boĭkov, and L G Snezhkova, and S E Severin, and V I Shvets
June 1971, European journal of biochemistry,
A I Miroshnikov, and V A Boĭkov, and L G Snezhkova, and S E Severin, and V I Shvets
March 1979, European journal of biochemistry,
A I Miroshnikov, and V A Boĭkov, and L G Snezhkova, and S E Severin, and V I Shvets
August 2021, Molecules (Basel, Switzerland),
A I Miroshnikov, and V A Boĭkov, and L G Snezhkova, and S E Severin, and V I Shvets
January 1973, Neurobiology,
Copied contents to your clipboard!