Detection of enterovirus 70 with monoclonal antibodies. 1984

L J Anderson, and M H Hatch, and M R Flemister, and G E Marchetti

To improve the ability to identify enterovirus-70 (EV-70) from patients with acute hemorrhagic conjunctivitis, we developed four monoclonal antibodies (MAbs) to EV-70. We reacted the four MAbs against nine previously characterized strains of EV-70 and heterologous viruses by virus neutralization, indirect immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Two of the MAbs neutralized all nine strains of EV-70 and none of the other enterovirus types tested. Two of the MAbs gave a positive reaction with all nine strains by indirect immunofluorescence, and three reacted with all nine strains by ELISA. None of the MAbs gave a positive reaction with heterologous viruses, including those associated with eye disease, by indirect immunofluorescence or ELISA. The two neutralizing MAbs failed to give a positive reaction with some of the strains of EV-70 by indirect immunofluorescence and ELISA, yet they neutralized these viruses. By ELISA with a polyclonal serum as capture antibody and a mixture of MAbs as detector antibody, we were able to detect from 10(2.2) to 10(5.8) 50% tissue culture infective doses of virus and to type lyophilized isolates of EV-70 sent from Taiwan from which we could not recover infectious virus. By choosing the appropriate MAb, or mixture of MAbs, we could construct a test which had the type specificity and strain sensitivity needed to type isolates of EV-70.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003231 Conjunctivitis INFLAMMATION of the CONJUNCTIVA. Pink Eye,Conjunctivitides,Pink Eyes
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D004770 Enterovirus A genus of the family PICORNAVIRIDAE whose members preferentially inhabit the intestinal tract of a variety of hosts. The genus contains many species. Newly described members of human enteroviruses are assigned continuous numbers with the species designated "human enterovirus". Coxsackie Viruses,Coxsackieviruses
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005260 Female Females
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

L J Anderson, and M H Hatch, and M R Flemister, and G E Marchetti
May 1987, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology,
L J Anderson, and M H Hatch, and M R Flemister, and G E Marchetti
October 1992, Journal of virology,
L J Anderson, and M H Hatch, and M R Flemister, and G E Marchetti
November 1990, Nippon Ganka Gakkai zasshi,
L J Anderson, and M H Hatch, and M R Flemister, and G E Marchetti
December 2013, Monoclonal antibodies in immunodiagnosis and immunotherapy,
L J Anderson, and M H Hatch, and M R Flemister, and G E Marchetti
April 1987, Journal of medical virology,
L J Anderson, and M H Hatch, and M R Flemister, and G E Marchetti
January 1990, Viral immunology,
L J Anderson, and M H Hatch, and M R Flemister, and G E Marchetti
January 1988, Chinese medical journal,
L J Anderson, and M H Hatch, and M R Flemister, and G E Marchetti
February 1982, Lancet (London, England),
L J Anderson, and M H Hatch, and M R Flemister, and G E Marchetti
December 2012, Journal of virological methods,
L J Anderson, and M H Hatch, and M R Flemister, and G E Marchetti
July 1998, Journal of clinical microbiology,
Copied contents to your clipboard!