Organization and expression of mouse mammary tumor virus sequences in normal and neoplastic C3Hf/HeSed mouse tissues. 1984

B J Popko, and R J Pauley

The organization and expression of germinally transmitted mouse mammary tumor virus (MMTV) proviruses in C3Hf/HeSed mouse tissues were examined. Digestion with the restriction enzymes EcoRI, BamHI, and HindIII and hybridization with cloned probes specific for the long terminal repeat and the 5' and 3' regions of the MMTV genome revealed three full-length (units Ib, II, and V) and two subgenomic (units I and IX) MMTV proviruses in C3Hf/HeSed mouse germ line DNA. The EcoRI fragments (15.0 and 5.7 kilobase pairs [kbp]) that contained unit Ib were previously described as separate, subgenomic MMTV proviruses. The methylated state of each full-length MMTV provirus was examined in DNA from C3Hf/HeSed mouse livers, spleens, mammary glands, and mammary tumors by digestion with EcoRI or BamHI in combination with the methyl-sensitive restriction enzymes HhaI or HpaII. Unit Ib contained HhaI- and HpaII-sensitive sites in spleen, mammary gland, and mammary tumor DNA but was completely methylated in liver DNA. Units II and V contained HhaI- and HpaII-sensitive sites in mammary gland and mammary tumor DNA, but the sites were extensively methylated in spleen and liver DNA. The HhaI-sensitive sites were mapped to the 5' end of the 5' and 3' long terminal repeats of each full-length MMTV provirus. C3Hf/HeSed mouse tissue RNA was examined for MMTV transcripts. Mammary glands contained MMTV RNA species of 9.0, 3.8, and 1.7 kb. Mammary tumors contained high levels of the 9.0- and 3.8-kb transcripts but lacked the 1.7-kb species. A very low level of the 3.8-kb MMTV transcript was present in spleens. Livers lacked detectable MMTV RNA. These results implicate mammary tissue as the site of unit V activation in the formation of MMTV virions.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D008324 Mammary Tumor Virus, Mouse The type species of BETARETROVIRUS commonly latent in mice. It causes mammary adenocarcinoma in a genetically susceptible strain of mice when the appropriate hormonal influences operate. Bittner Virus,Mammary Cancer Virus,Mouse mammary tumor virus,Mammary Tumor Viruses, Mouse
D008325 Mammary Neoplasms, Experimental Experimentally induced mammary neoplasms in animals to provide a model for studying human BREAST NEOPLASMS. Experimental Mammary Neoplasms,Neoplasms, Experimental Mammary,Experimental Mammary Neoplasm,Mammary Neoplasm, Experimental,Neoplasm, Experimental Mammary
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005260 Female Females
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene

Related Publications

B J Popko, and R J Pauley
October 1974, Cancer research,
B J Popko, and R J Pauley
March 1989, Molecular and cellular endocrinology,
B J Popko, and R J Pauley
March 1966, Journal of the National Cancer Institute,
Copied contents to your clipboard!